Solution to Problem 5.6

Applying either the convolution algorithm or MVA, we can get the following solution.

For Q_{1}	Mean Queue Length $=0.215188$ Mean Waiting Time $=0.074276$ Mean Throughput $=0.507190$ Visit Ratio $=1$
For Q_{2}	Mean Queue Length $=0.084750$ Mean Waiting Time $=0.020970$ Mean Throughput $=0.312766$ Visit Ratio $=0.61667$
For Q_{3}	Mean Queue Length $=0.774200$ Mean Waiting Time $=1.111678$ Mean Throughput $=0.295859$ Visit Ratio $=0.58333$
For Q_{4}	Mean Queue Length $=4.925900$ Mean Waiting Time $=7.918800$ Mean Throughput $=0.496620$ Visit Ratio $=0.97917$

