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Solution to Problem 4.1

Following the residua life approach of Chapter 4, we get

W, =R+IW,X or W, -_R_
1- I X

where X is the mean service time and R is the mean residual service time. The exceptional first
service time is the random variable X'. This may be alternatively expressed as X+D where Dis a
random variable indicating the additional service required by the first customer starting a busy
period.

To find R, we consider atime interval of length t where we will subsequently let t® ¥ . Let M(t)
be the number of arrivalsin this interval and N(t) the number of busy periods. We note that -

Mean Busy Period Length (without exceptional first service) is 1 X — and the actual mean

busy period length BP will then be given as
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BP=X"+I1 X"

Using this, the mean cycle time T will be given by
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We can define the mean residual service time R, measured over the time duration (0,t) asthe
following as a good approximation (which gets better ast® ¥).
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For t® ¥, we observe the following
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Substituting, we get
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with X =X+D X2=X2+2DX+D7
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and therefore Wq = — —
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