Solution to Problem 4.1

Following the residual life approach of Chapter 4, we get

$$
W_{q}=R+\lambda W_{q} \bar{X} \quad \text { or } \quad W_{q}=\frac{R}{1-\lambda \bar{X}}
$$

where \bar{X} is the mean service time and R is the mean residual service time. The exceptional first service time is the random variable X^{*}. This may be alternatively expressed as $X+\Delta$ where Δ is a random variable indicating the additional service required by the first customer starting a busy period.

To find R, we consider a time interval of length t where we will subsequently let $t \rightarrow \infty$. Let $M(t)$ be the number of arrivals in this interval and $N(t)$ the number of busy periods. We note that -

Mean Busy Period Length (without exceptional first service) is $\frac{\bar{X}}{1-\lambda \bar{X}}$ and the actual mean busy period length $\overline{B P}$ will then be given as

$$
\overline{B P}=\overline{X^{*}}+\lambda \overline{X^{*}} \frac{\bar{X}}{1-\lambda \bar{X}}=\frac{\overline{X^{*}}}{1-\lambda \bar{X}}=\frac{\bar{X}+\bar{\Delta}}{1-\lambda \bar{X}}
$$

Using this, the mean cycle time T_{C} will be given by

$$
\begin{aligned}
& T_{C}=\frac{1}{\lambda}+\frac{\overline{X^{*}}}{1-\lambda \bar{X}}=\frac{(1+\lambda \bar{\Delta})}{\lambda(1-\lambda \bar{X})} \\
& N(t)=\frac{t}{T_{C}}=\frac{\lambda t(1-\lambda \bar{X})}{(1+\lambda \bar{\Delta})}
\end{aligned}
$$

We can define the mean residual service time R_{t} measured over the time duration $(0, t)$ as the following as a good approximation (which gets better as $t \rightarrow \infty$).

$$
\begin{aligned}
R_{t} & =\frac{1}{t} \int_{0}^{t} r(\tau) d \tau=\frac{1}{t} \sum_{i=1}^{M(t)-N(t)} \frac{X_{i}^{2}}{2}+\frac{1}{t} \sum_{j=1}^{N(t)} \frac{X_{j}^{* 2}}{2} \\
& =\frac{1}{2}\left[\left(\frac{M-N}{t}\right)\left(\frac{1}{(M-N)} \sum_{i=1}^{M-N} X_{i}^{2}\right)+\left(\frac{N}{t}\right)\left(\frac{1}{(N)} \sum_{j=1}^{N} X_{j}^{* 2}\right)\right]
\end{aligned}
$$

For $t \rightarrow \infty$, we observe the following

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} R_{t}=R \\
& \lim _{t \rightarrow \infty} \frac{N(t)}{t}=\frac{\lambda(1-\lambda \bar{X})}{(1+\lambda \bar{\Delta})} \\
& \lim _{t \rightarrow \infty} \frac{M(t)}{t}=\lambda \\
& \lim _{t \rightarrow \infty} \frac{M(t)-N(t)}{t}=\lambda-\frac{\lambda(1-\lambda \bar{X})}{(1+\lambda \bar{\Delta})}=\frac{\lambda^{2}(\bar{X}+\bar{\Delta})}{(1+\lambda \bar{\Delta})}=\frac{\lambda^{2} \overline{X^{*}}}{(1+\lambda \bar{\Delta})}
\end{aligned}
$$

Substituting, we get

$$
\begin{aligned}
R & =\frac{\overline{X^{* 2}}}{2}\left[\frac{\lambda(1-\lambda \bar{X})}{1+\lambda \bar{\Delta}}\right]+\frac{\overline{X^{2}}}{2}\left[\frac{\lambda^{2} \overline{X^{*}}}{1+\lambda \bar{\Delta}}\right] \\
& =\frac{\lambda \overline{X^{* 2}}}{2}\left[\frac{(1-\lambda \bar{X})}{1+\lambda \bar{\Delta}}\right]+\frac{\lambda \overline{X^{2}}}{2}\left[\frac{(1+\lambda \bar{\Delta})-(1-\lambda \bar{X})}{1+\lambda \bar{\Delta}}\right] \\
& =\frac{\lambda \overline{X^{2}}}{2}+\frac{\lambda(1-\lambda \bar{X})\left(\overline{X^{* 2}}-\overline{X^{2}}\right)}{2(1+\lambda \bar{\Delta})}
\end{aligned}
$$

with $\quad \overline{X^{*}}=\bar{X}+\bar{\Delta} \quad \overline{X^{* 2}}=\overline{X^{2}}+2 \bar{\Delta} \bar{X}+\overline{\Delta^{2}}$
and therefore $W_{q}=\frac{\lambda \overline{X^{2}}}{2(1-\lambda \bar{X})}+\frac{\lambda\left(\overline{X^{* 2}}-\overline{X^{2}}\right)}{2(1+\lambda \bar{\Delta})}$

