Solution to Problem 2.8

- (a) This is the same as the earlier problem (2.7) substituting $e^{-a/m}$ instead of the variable a used there.
- (b) For $\mathbf{a} \otimes \mathbf{Y}$, the system degenerates to a queue with only two states 0 and 1 with $\mathbf{I}_0 = \mathbf{I}$, $\mathbf{I}_1 = 0$, $\mathbf{m}_0 = 0$ and $\mathbf{m}_1 = \mathbf{m}$ This may be easily solved to get

$$p_0 = \frac{1}{1+\mathbf{r}}$$
 $p_1 = \frac{\mathbf{r}}{1+\mathbf{r}}$ with $\mathbf{r} = \frac{\mathbf{l}}{\mathbf{m}}$

The average number in the system $N = \frac{\mathbf{r}}{1+\mathbf{r}}$