Solution to Problem 2.4

(a) The expected length of time customer A spends waiting for service $=\frac{(n+1)}{m \mu}$
(b) The expected length of time from A's arrival to the time when the system becomes empty
$=\frac{(n+1)}{m \mu}+\frac{1}{\mu} \sum_{i=1}^{m} \frac{1}{i}$
(c) \quad For $k=1, \ldots \ldots,(n+1) \quad P\{X=k\}=0$

For $k=n+2$,
$P\{X=k\}=\mathrm{P}\left\{X_{A}<\right.$ residual service time of each $X_{i}, i=1, \ldots,(m-1)$ in queue $\}$
$=\int_{0}^{\infty} \mu e^{-\mu \tau}\left[P\{X>\tau]^{m-1} d \tau=\int_{0}^{\infty} \mu e^{-\mu \tau} e^{-(m-1) \mu \tau} d \tau=\frac{1}{m}\right.$

For $k=n+3$,
$P\{X=k\}=\mathrm{P}\left\{\right.$ one residual service time is less than X_{A} while the other $(m-2)$ are greater than
$\left.X_{A}\right\}=\int_{0}^{\infty} \mu e^{-\mu \tau}(m-1)\left(1-e^{-\mu \tau}\right) e^{-(m-2) \mu \tau} d \tau=\frac{1}{m}$

In general, for $k=n+2+i, i=0, \ldots \ldots(m-1)$, using $x=e^{-\mu \tau}$

$$
\begin{aligned}
&=\binom{m-1}{i} \int_{0}^{1}(1-x)^{i} x^{m-1-i} d x \\
& P\{X=k\} \\
&=\left(\begin{array}{c}
m-1 \\
i
\end{array} \int_{0}^{1} \sum_{j=0}^{i}(-1)^{j}\binom{i}{j} x^{m-1-i+j} d x=\binom{m-1}{i} \sum_{j=0}^{i}\binom{i}{j} \frac{(-1)^{j}}{m-i+j}=\frac{1}{m}\right.
\end{aligned}
$$

For proving the above, use the result that for $i=0, \ldots \ldots,(m-1)$

$$
I(m-1, i)=\int_{0}^{1}\binom{m-1}{i}(1-x)^{i} x^{m-1-i} d x=I(m-1, i-1) \text { and that } I(m-1,0\}=I\{m-1,1\}=1
$$

(d) Service to the customer served before customer A and the service to customer A will be as shown in Fig. 1.1 when A finishes service before the former. Here τ is the time interval between the start of service for these two customers in the queue. Let X_{A} be the duration of service for customer A and let X_{l} be the service duration of the other customer.

The probability P that we need to find is then $P=P\left\{\tau+X_{A}<X_{l}\right\}$ as obtained next where $f_{\tau}(t)=(m$ 1) $\mu e^{-(m-1) \mu t}$ and $f_{X A}(t)=\mu e^{-\mu t}$ for $t \geq 0$. Let $Y=\tau+X_{A}$ and since $\tau \perp X_{A}$, we can write that

$$
\begin{aligned}
L_{Y}(s) & =L_{\tau}(s) L_{X_{A}}(s)=\frac{\mu^{2}(m-1)}{(s+\mu)[s+(m-1) \mu]} \\
& =\frac{\mu(m-1)}{(m-2)}\left[\frac{1}{s+\mu}+\frac{1}{s+(m-1) \mu}\right]
\end{aligned}
$$

Figure 1.1. Service to A finishes before the service ends for the earlier customer

Therefore $f_{Y}(y)=\frac{\mu(m-1)}{(m-2)}\left[e^{-\mu y}-e^{-(m-1) \mu y}\right] \quad$ for $y \geq 0$
Using this, we can find

$$
P\{Y<\tau\}=\int_{0}^{\tau} f_{Y}(y) d y=\left(\frac{m-1}{m-2}\right)\left[\left(1-e^{-\mu \tau}\right)-\frac{1}{(m-1)}\left(1-e^{-(m-1) \mu \tau}\right]\right.
$$

and therefore

$$
P=\int_{\tau=0}^{\infty} P\{Y<\tau\} \mu e^{-\mu \tau} d \tau=\left(\frac{m-1}{m-2}\right)\left[1-\frac{1}{2}-\frac{1}{(m-1)}\left(1-\frac{1}{m}\right)\right]=\frac{1}{2}\left(1-\frac{1}{m}\right)
$$

(e) From the definition of the Erlang-n distributions as the sum of $(n+1)$ i.i.d exponentially distributed random variables, we get

$$
P\{w \leq x\}=\int_{0}^{x} \frac{\mu(\mu \alpha)^{n}}{n!} e^{-\mu \alpha} d \alpha
$$

