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Solution to Problem 2.4

(a) The expected length of time customer A spends waiting for service =
µm
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(b) The expected length of time from A’s arrival to the time when the system becomes empty
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(c) For k=1,......,(n+1)           P{X=k} = 0

For k=n+2,

P{X=k} = P{XA < residual service time of each Xi, i=1,..,(m-1) in queue}
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For k=n+3,

P{X=k} = P{one residual service time is less than XA while the other (m-2) are greater than

XA} =
m

deeme m 1
)1)(1(

0

)2(∫
∞

−−−− =−− τµ µττµτµ

In general, for k=n+2+i, i=0,......(m-1), using x=e-µτ

  P{X=k} 
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For proving the above, use the result that for i=0,...., (m-1)
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imI imi  and that I(m-1,0} = I{m-1,1} = 1

(d) Service to the customer served before customer A and the service to customer A will be as
shown in Fig. 1.1 when A finishes service before the former. Here τ is the time interval between
the start of service for these two customers in the queue. Let XA be the duration of service for
customer A and let X1 be the service duration of the other customer.
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The probability P that we need to find is then P=P{τ+XA<X1} as obtained next where fτ(t)=(m-
1)µe-(m-1)µt and fXA(t)=µe-µt for t≥0. Let Y=τ+XA and since τ⊥XA, we can write that
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Figure 1.1. Service to A finishes before the service ends for the earlier customer
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Using this, we can find
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(e) From the definition of the Erlang-n distributions as the sum of (n+1) i.i.d exponentially
distributed random variables, we get
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