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Solution to Problem 2.4
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(a) The expected length of time customer A spends waiting for service = (n+h
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(b) The expected length of time from A’s arrival to the time when the system becomes empty
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In generd, for k=n+2+i, i=0,......(m-1), using x=e™
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For proving the above, use the result that for i=0,...., (m-1)

I(m- 1i)= (% :(1 X' x™ gk =1(m- 1i - 1) and that I(m-1,0} = {m-1,1} = 1

(d) Service to the customer served before customer A and the service to customer A will be as
shown in Fig. 1.1 when A finishes service before the former. Heret isthe time interval between
the start of service for these two customersin the queue. Let X, be the duration of service for
customer A and let X; be the service duration of the other customer.
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The probability P that we need to find is then P=P{t +Xa<X;} as obtained next where f; (t)=(m-
D)me ™™ and fua(t)=ne™ for t3 0. Let Y=t + X, and since t X, we can write that
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Figure 1.1. Serviceto A finishes before the service ends for the earlier customer
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Using this, we can find
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(e) From the definition of the Erlang-n distributions as the sum of (n+1) i.i.d exponentialy
distributed random variables, we get
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