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Solution to Problem 2.3

(a) Infinite System Capacity (N=¥)
Wehave | ; =a™/,m = jm forj=012.....¥

The differential equations for each state may be written as
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We define P(zt) as the generating function of the state of the system at timet as given next.
E :
P(zt)=a p;(®)Z’
j=0

Multiplying the | equation by Z and summing the L.H.S. and RHS for all values of j, we will get
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This may be simplified to get the final result
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This may be solved with the desired initial conditions to get the corresponding transient solution.

(b) Finite System capacity N

In this case, the differential equations for the system's state probabilities will become
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From the above, multiplying the | equation by Z and summing the L.H.S. and RHS for all values
of j=0, 1....., N, we will get
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This may be ssimplified to get the final result for the finite capacity (of N) case as
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