Solution to Problem 2.13

(a) Let n be the number in system when both Prof. Calculus and M. Tintin are working and n * the number in system when only Prof. Calculus is working.

Figure 1.6. State Transition Diagram
Using $\rho=\lambda / \mu$

$$
\begin{aligned}
& p_{2}=\left(p_{1}+p_{1^{*}}\right) \rho \\
& \left(p_{1}+p_{1^{*}}\right)=2 p_{0} \rho \\
& p_{n}=\rho^{n-2} p_{2}=2 \rho^{n} p_{0} \quad n=3,4,5 \ldots \ldots \infty
\end{aligned}
$$

The normalisation condition may then be applied to give

$$
\begin{aligned}
& p_{0}\left[1+2 \rho+2 \rho^{2}+2 \rho^{3}+\ldots \ldots \ldots \ldots \infty=1\right. \\
& p_{0}=\frac{1-\rho}{1+\rho}
\end{aligned}
$$

The other state probabilities may now be found as

$$
\begin{array}{ll}
p_{1^{*}}=p_{0} \frac{2 \rho}{1+2 \rho} & p_{1}=p_{0} \frac{4 \rho^{2}}{1+2 \rho} \\
p_{n}=2 \rho^{n} p_{0} & n=3,4,5 \ldots \ldots \ldots
\end{array}
$$

Mean number of students in the conference room $=\frac{2 \rho}{\left(1-\rho^{2}\right)}$
$P\{$ Prof. Calculus is working $\}=1-p_{0}-0.5 p_{1}=\frac{2 \rho^{2}\left(1+\rho+\rho^{2}\right)}{(1+\rho)(1+2 \rho)}$
$\mathrm{P}\{\mathrm{M}$. Tintin is working $\}=0.5 p_{1}+\sum_{i=2}^{\infty} p_{i}=\frac{2 \rho^{2}(2+\rho)}{(1+\rho)(1+2 \rho)}$

