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Solution to Problem 2.12

We can rewrite LB(s) as 
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sLB  which implies that the service

centre looks like the following.
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Figure 1.4. Equivalent Service Center Model (individual services are exponentially distributed)

Customers entering the service centre choose either of the two exponential  servers. A new
customer does not enter the service facility until the previous customer has departed. Let the state
of the system be denoted by {n, j} where n is the number in the system and j is the server
currently used by the customer in the service centre. The state transition diagram may then be
drawn as follows.
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Figure 1.5. State Transition Diagram

The system can now be completely solved by writing the appropriate balance equations and
solving them for the individual state probabilities. In particular, we will find that
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We can similarly find that
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