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Solution to Problem 2.11

(a) Let "0" represent the state when the system is empty. Let {1, 2,....., ∞} be the system states
when the system is working like a normal M/M/1 queue and let {1*,....., K*} be the states when
the server is not working - for both these cases, the state i or i* represents the situation when there
are i customers in the system. For this, the system's state transition diagram may be drawn as
shown in Fig. 1.3.
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Figure 1.3. State Transition Diagram

(b) From flow balance conditions, for the case K=2, we can get the following using ρ=λ/µ
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Using the normalisation condition, we can find
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P{k users in the system} =
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This may be used to find that the mean number in the system is =
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Note that the probability of the server being busy = 1- p0 - p1* = (1-ρ)
This is the same as experienced in a normal M/M/1 queue so the server does not gain anything by
following this modified approach - it still works equally hard. This will be true even if K is larger
than two .


