EE 679, Queueing Systems (2000-01F)
 Test -5, November 6, 2000

Max. Marks $=25$
Time $=\mathbf{6 0}$ minutes
Attempt all three problems

1. Students enter the mess for breakfast in equally likely groups of either one or two with a group arrival rate of λ. The first member of the group is served in an exponentially distributed time X with pdf $b(t)$ and LST $\widetilde{B}(s)$. The second member (if any) orders an extra omelet which requires Δ seconds more where Δ is fixed. The mess operates as a Single-Server $M^{[X]} / G / l$ queue.

Find the mean delay that an arriving student will encounter before being served.
2. Consider a 2-priority preemptive resume priority $\mathrm{M} / \mathrm{G} / 1$ queue with high priority customers of Class 2 and lower priority customers of Class 1. The system enforces the rule that there can be only one Class 2 customer in the system at any time (i.e. there is no buffering for Class 2) - however, there is infinite buffering for Class 1 customers. Let X_{2} (FIXED) be the service time for Class 2 and X_{l} (FIXED) be the service time for Class 1. Arrival processes are Poisson with average arrival rate λ_{1} for Class 1 and λ_{2} for Class 2.

For this, consider a Class 1 customer who start service at time t and leaves the system at time $t+T$. What would be the distribution (or L.S.T.) of the random variable T ? [Hint: You can assume a Poisson distribution at the appropriate place without explicitly deriving it.]
[10]
3. Consider the system of Problem 2 once again except that we now assume that Class 2 customers can also be infinitely buffered. For this obtain the average total delays encountered by Class 2 and Class 1 customers.
[5]

