EE 679, Queueing Systems (2001-02F) Test -4, October 17, 2001

Max. Marks = 25	Time = 60 minutes
Attempt both problems	

1. Consider a M/G/1 queue with *exceptional first service* where arrivals come at the mean rate I. A normal service time is of duration X (random variable) with mean and second moment of \overline{X} and $\overline{X^2}$, respectively. The *exceptional first service* starting each busy period is of duration X + D where the random variable D has the mean and second moments $\overline{\Delta}$ and $\overline{\Delta^2}$, respectively. The random variables X and D are independent of each other.

Using the Residual Life approach, obtain the following for this queue.

(a) The probability that the server is idle	[3]
---	-----

(b) The mean time *W* spent in system by an arrival. [6]

2. Consider an unusual M/G/1 queue where the normal service is the random variable X with pdf, cdf and L.T. of pdf given by b(t), B(t) and $\tilde{B}(s)$. This is the kind of service given to jobs in the queue in **all situations except** when the number of jobs in the system at the instant service starts is one. When that is the case, the service time is an exceptional one of duration X^* with pdf, cdf and L.T. of pdf given by $b^*(t)$, $B^*(t)$ and $\tilde{B}^*(s)$. The mean arrival rate of jobs to the queue is given by I.

For this queue, find the following

(a) The probability p_0 that the system is empty	[8]
--	-----

(b) The probability p_1 that there is one job in the system [8]