EE 679, Queueing Systems (2000-01F) Test -4, October 23, 2000

Max. Marks = 25 Attempt both problems

Time = 60 minutes

1. Consider an M/G/1 queue at equilibrium, where the server goes on a *single vacation* of random length whenever the system becomes empty. Let $f_V(t)$ be the pdf of the length of the vacation period with L.S.T. $\tilde{F}_V(s)$ and with \overline{V} and $\overline{V^2}$ as its first and second moments respectively.

Use the Imbedded Markov Chain approach to find-

- (a) The probability p_0 that the system is empty (3^*+3)
- (b) The *Generating Function* P(z) of the number in the system (6)

[*Note*: *3* marks in (a) above are for writing the correct equation(s) describing the Imbedded Markov Chain]

2. Consider an M/G/1 system with *exceptional first service*. We are given that the first and second moments of a normal service time are \overline{X} and \overline{X}^2 , respectively. However, the first and second moments of the *first service duration in a busy period* are \overline{X} and \overline{X}^2 , respectively.

Use the Residual Life approach to find the mean waiting time in queue \overline{W}_q and the mean time spent in system \overline{W} for a job arriving to the system under equilibrium conditions.

(9+4)