EE 679, Queueing Systems (2001-02F) Test -1, Aug 24, 2001

Max. Marks = 25	Time = 60 minutes
Attempt both problems	

1. Following the same approach as discussed in class for the simple M/M/1/ ∞ queue, we want to do the equilibrium analysis of the M/M/1/K queue (Poisson Arrivals, Exponential Service Times, Single Server, Maximum of K users in system). Assume that the arrivals come at rate l and that the mean service time is $\frac{1}{m}$. Define $r = \frac{l}{m}$ and obtain the following. (You can write the balance equations directly, if you wish.)

a)	The state probabilities p_n for $n=0,1,2,\ldots,K$ (Note that n is the number	in the
	system.)	[6]
b)	The mean number in the system	[5]
c)	The probability that an arrival will leave without service	[2]
d)	When will the system have an equilibrium solution? Justify your answer	with an
	appropriate statement. (No proof is required.)	[2]

2. The state transition diagram for a continuous time Markov chain is given below where I is the arrival rate and m is the service rate.

Solve this system to obtain its equilibrium state probabilities stating the condition (if any) under which such a solution will exist.

[Note that the state probabilities will have to be found for all states 0, 1, 1', 2, 2'∞. You should find p_0 and $p_{n'}$ explicitly and at least give expressions which may be evaluated for p_n .]