EE 679, Queueing Systems (2000-01F) Test -1, Aug 18, 2000

Max. Marks $=25$	Time $=\mathbf{6 0}$ minutes
Attempt both problems	

1. A system is put into operation at time $t=0$. Its time of failure is a random variable X with $\operatorname{cdf} \mathrm{F}_{\mathrm{X}}(\mathrm{x})$ and $\operatorname{pdf} \mathrm{f}_{\mathrm{X}}(\mathrm{x})$. Let $\beta(\mathrm{t}) \mathrm{dt}$ be the probability that it will fail in $(\mathrm{t}, \mathrm{t}+\mathrm{dt})$ given that it has not failed until time t.
(a) Find $f_{X}(x)$ if we are given that $\beta(t)=k t$.
(b) If X is uniformly distributed in the interval $(0, T)$, then what would be $\beta(\mathrm{t})$ in this interval.
2. The instructor for EE679, keeps the door of the lecture hall L-5 open for a random time interval Y before his lecture where the pdf, cdf and L.S.T of Y are given as $f_{Y}(y)$, $F_{Y}(y)$ and $\widetilde{F}_{Y}(s)$, respectively. Students arrive from a Poisson Process with rate λ and can enter L-5 only while the door is open. Let N be the (random) number of students attending the lecture (i.e. those who can enter!).
(a) Find the Generating Function $G_{N}(z)$ of the number of students N attending the EE679 lecture.
(b) Find the first and seconds moments of N , in terms of the moments of Y using (a) [5]
(c) If $f_{Y}(y)$ is exponentially distributed with mean $1 / \mu$, find the distribution of N using

$$
\begin{equation*}
G_{N}(z) \text { from (a). } \tag{5}
\end{equation*}
$$

