EE 679, Queueing Systems (2001-02F) Solutions to Test -6

1. Using flow balance conditions, we get the following equations.

$$I_{3} = 0.5I_{1}$$

$$I_{1} = I + 0.2I_{2} + 0.2I_{3}$$

$$I = 0.6I_{3} + 0.5I_{4}$$

$$I_{2} = 0.5I_{1} + 0.5I_{4}$$

which may be solved to get

$$(l_1, l_2, l_3, l_4) = (1.395l, 1.279l, 0.698l, 1.162l)$$

 $(r_1, r_2, r_3, r_4) = (1.395r, 1.279r, 1.396r, 2.324r)$ $r = \frac{l}{m}$

(a) Network stable for
$$2.324 r < 1 \implies l < 0.43 m$$

(b) In this case,
$$(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, \mathbf{r}_4) = (0.14, 0.128, 0.14, 0.23)$$

Therefore

$$P(n_1, n_2, n_3, n_4) = 0.497(0.14)^{n_1} (0.128)^{n_2} (0.14)^{n_3} (0.23)^{n_4}$$

(c) Using the result
$$N_i = \frac{r_i}{1 - r_i}$$

we get $N_1 = 0.163$ $N_2 = 0.147$ $N_3 = 0.162$ $N_4 = 0.303$

(d)
$$N = N_1 + N_2 + N_3 + N_4 = 0.775$$

Therefore
$$W = \frac{N}{l} = 7.75$$

2. The flow balance equations for this case are

$$I_1 = 0.6I_2$$

 $I_3 = 0.5I_1 + 0.2I_2 + 0.4I_3$

which gives $l_2 = 1.667 l_1$ and $l_3 = 1.389 l_1$

Choosing Q1 as the reference queue, we get the visit ratios to be

$$V_1 = 1$$
 $V_2 = 1.667$ $V_3 = 1.389$

(a) Using the above, the steps of the MVA algorithm will be as follows.

(1)
$$m=0$$
 $N_1=0$ $N_2=0$ $N_3=0$
(2) $m=1$ $W_1=2$ $W_2=1$ $W_3=2$
 $I = \frac{1}{2+1.667+(2)(1.389)} = 0.155$
 $N_1=0.31$ $N_2=0.258$ $N_3=0.431$
(3) $m=2$ $W_1=2.62$ $W_2=1.258$ $W_3=2.862$
 $I = \frac{2}{2.62+(1.667)(1.258)+(1.389)(2.862)} = 0.23$
 $N_1=0.603$ $N_2=0.482$ $N_3=0.914$
(4) $m=3$ $W_1=3.206$ $W_2=1.482$ $W_3=3.828$
 $I = \frac{3}{3.206+(1.667)(1.482)+(1.389)(3.828)} = 0.273$
 $N_1=0.875$ $N_2=0.674$ $N_3=1.451$

The mean number in each queue will be

$$N_1 = 0.875$$
 $N_2 = 0.674$ $N_3 = 1.451$

(b) Note that if we choose $l_1 = m_1 = 0.5$, then $u_1 = 1$, $u_2 = 0.833$, $u_3 = 1.389$ will be the relative utilizations of the three queues. From this, it is evident that as M becomes large, i.e. $M \circledast \Psi$, the queue that will get bottlenecked will be Q_3 . This also implies that when M is sufficiently large, there will always be one or more users in Q_3 and hence the departure rate for this queue will approach its service rate $m_3 = 0.5$.

Therefore, for large <i>M</i> , we will have		$l_3 = m_3 = 0.5$
Using this and flow balance, we get		l ₁ =0.5/1.389=0.36
	and	$l_2 = (1.667)(0.36) = 0.6$

With large M, i.e. $M \otimes \mathbf{Y}$, we then have

Actual Throughput = $(\mathbf{l}_1, \mathbf{l}_2, \mathbf{l}_3) = (0.36, 0.60, 0.50)$ Actual Utilization = $(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3) = (0.72, 0.60, \mathbf{r}_3 \ \mathbb{B}1)$ Note that, as expected, the actual utilization of Q_3 tends toward unity as $M \ \mathbb{B} \mathbf{Y}$ Using the result $N_i = \frac{\mathbf{r}_i}{1 - \mathbf{r}_i}$ we get $N_1 = 2.57$ $N_2 = 1.5$ $N_3 = (M-4.07)$

Note that this will be how the M users will get distributed between the three queues.