EE 679, Queueing Systems (2001-02F) Solutions to Test -6

1. Using flow balance conditions, we get the following equations.

$$
\begin{aligned}
& \lambda_{3}=0.5 \lambda_{1} \\
& \lambda_{1}=\lambda+0.2 \lambda_{2}+0.2 \lambda_{3} \\
& \lambda=0.6 \lambda_{3}+0.5 \lambda_{4} \\
& \lambda_{2}=0.5 \lambda_{1}+0.5 \lambda_{4}
\end{aligned}
$$

which may be solved to get

$$
\begin{aligned}
& \left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right)=(1.395 \lambda, 1.279 \lambda, 0.698 \lambda, 1.162 \lambda) \\
& \left(\rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}\right)=(1.395 \rho, 1.279 \rho, 1.396 \rho, 2.324 \rho) \quad \rho=\frac{\lambda}{\mu}
\end{aligned}
$$

(a) Network stable for $\quad 2.324 \rho<1 \Rightarrow \lambda<0.43 \mu$
(b) In this case, $\quad\left(\rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}\right)=(0.14,0.128,0.14,0.23)$

Therefore

$$
P\left(n_{1}, n_{2}, n_{3}, n_{4}\right)=0.497(0.14)^{n_{1}}(0.128)^{n_{2}}(0.14)^{n_{3}}(0.23)^{n_{4}}
$$

(c) Using the result $\quad N_{i}=\frac{\rho_{i}}{1-\rho_{i}}$
we get $\quad N_{1}=0.163 \quad N_{2}=0.147 \quad N_{3}=0.162 \quad N_{4}=0.303$
(d) $\quad N=N_{1}+N_{2}+N_{3}+N_{4}=0.775$

Therefore $\quad W=\frac{N}{\lambda}=7.75$
2. The flow balance equations for this case are

$$
\begin{aligned}
& \lambda_{1}=0.6 \lambda_{2} \\
& \lambda_{3}=0.5 \lambda_{1}+0.2 \lambda_{2}+0.4 \lambda_{3}
\end{aligned}
$$

which gives $\quad \lambda_{2}=1.667 \lambda_{1}$ and $\lambda_{3}=1.389 \lambda_{I}$
Choosing Q1 as the reference queue, we get the visit ratios to be

$$
V_{1}=1 \quad V_{2}=1.667 \quad V_{3}=1.389
$$

(a) Using the above, the steps of the MVA algorithm will be as follows.
(1) $m=0$

$$
N_{l}=0
$$

$$
N_{2}=0
$$

$$
N_{3}=0
$$

(2) $m=1$
$W_{l}=2$
$W_{2}=1$
$W_{3}=2$

$$
\lambda=\frac{1}{2+1.667+(2)(1.389)}=0.155
$$

$$
N_{1}=0.31 \quad N_{2}=0.258 \quad N_{3}=0.431
$$

$$
m=2
$$

$$
W_{l}=2.62
$$

$$
\begin{equation*}
W_{2}=1.258 \quad W_{3}=2.862 \tag{3}
\end{equation*}
$$

$$
\lambda=\frac{2}{2.62+(1.667)(1.258)+(1.389)(2.862)}=0.23
$$

$$
N_{1}=0.603 \quad N_{2}=0.482 \quad N_{3}=0.914
$$

$$
\text { (4) } \quad m=3
$$

$$
W_{I}=3.206 \quad W_{2}=1.482 \quad W_{3}=3.828
$$

$$
\lambda=\frac{3}{3.206+(1.667)(1.482)+(1.389)(3.828)}=0.273
$$

$$
N_{1}=0.875 \quad N_{2}=0.674 \quad N_{3}=1.451
$$

The mean number in each queue will be

$$
N_{1}=0.875 \quad N_{2}=0.674 \quad N_{3}=1.451
$$

(b) Note that if we choose $\lambda_{I}=\mu_{I}=0.5$, then $u_{1}=1, u_{2}=0.833, u_{3}=1.389$ will be the relative utilizations of the three queues. From this, it is evident that as M becomes large, i.e. $M \rightarrow \infty$, the queue that will get bottlenecked will be Q_{3}. This also implies that when M is sufficiently large, there will always be one or more users in Q_{3} and hence the departure rate for this queue will approach its service rate $\mu_{3}=0.5$.

Therefore, for large M, we will have Using this and flow balance, we get

$$
\begin{array}{ll}
& \lambda_{3}=\mu_{3}=0.5 \\
& \lambda_{1}=0.5 / 1.389=0.36 \\
\text { and } \quad & \lambda_{2}=(1.667)(0.36)=0.6
\end{array}
$$

With large M, i.e. $M \rightarrow \infty$, we then have
Actual Throughput $=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)=(0.36,0.60,0.50)$
Actual Utilization $=\left(\rho_{1}, \rho_{2}, \rho_{3}\right)=\left(0.72,0.60, \rho_{3} \rightarrow 1\right)$
Note that, as expected, the actual utilization of Q_{3} tends toward unity as $M \rightarrow \infty$
Using the result

$$
N_{i}=\frac{\rho_{i}}{1-\rho_{i}}
$$

we get

$$
N_{l}=2.57
$$

$$
N_{2}=1.5
$$

$$
N_{3}=(M-4.07)
$$

Note that this will be how the M users will get distributed between the three queues.

