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EE 679, Queueing Systems (2001-02F)
Solutions to Test -5
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The total queueing delay is
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2. From Problem 1, we can get that

qz

zq
z

−
−

=
1

)1(
)(β         

2
2

)1(

2

1

1

q

q
rr

q
r

−
=−

−
=

In this case, we have
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Differentiating this and using the moment generating property, we get the moments of the
batch service time as



Solutions to Test 5, EE679, Queuing Systems, Copyright 2001, Sanjay K. Bose 2

[ ] 222222*

*

)(2)( XrXrXXrX

rXX

+∆+−+∆=

∆+=

and

2

2

2

*
2*

2

)(

)1(2

WWW

qX
r

rr
W

X
X

W

qbq

qb

+=

∆+
−

=

=
−

= λρ
ρ

λ

3. Note that, as derived in Section 4.5.1, the mean queueing delay Wq(k) of customers of
priority class k will be given by
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This may be rewritten as
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We can now write the sum ∑
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An interesting alternate approach may also be considered. Assume that the queue
is examined at an arbitrary time instant and let R be the mean residual service
time observed at that time with U as the mean unfinished work in the queue. We
can then write that
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Applying Little's result individually for each priority class gives
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Since both U and R are not dependent on the priority order of the classes,
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)(ρ will also be independent of this. Moreover, for a single class queue, we can

write that

ρρ
ρ

−
=

−
+=

11

RR
RU

Therefore, we get that for n priority classes as well 
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