EE 679, Queueing Systems (2001-02F) Solutions to Test -3

1. The state transition diagram for this system will be as shown below. The state is represented as (m, j) where m is the number of jobs in the system and j is the stage that the job is currently in.

State Transition Diagram
Choosing convenient closed boundaries, the balance equations for this system may be written as
$\lambda p_{0}=\mu p_{11}=(\lambda+\mu) p_{12}$
$\lambda\left(p_{11}+p_{12}\right)=\mu p_{21}$
$p_{22}+p_{12}=p_{11}+p_{21}$
which gives

$$
p_{11}=\rho p_{0} \quad p_{12}=\frac{\rho}{1+\rho} p_{0} \quad p_{21}=\frac{\rho^{2}(2+\rho)}{1+\rho} p_{0} \quad p_{22}=\frac{\rho^{2}(3+\rho)}{1+\rho} p_{0}
$$

Applying the normalisation condition to this, we get
$p_{0}=\frac{1+\rho}{1+3 \rho+6 \rho^{2}+2 \rho^{3}}$

The probability P_{B} that an arrival leaves without service is $\left(p_{21}+p_{22}\right)$. This leads to
$P_{B}=\frac{\rho^{2}(5+2 \rho)}{(1+\rho)} p_{0} \quad$ and $\quad \lambda_{e f f}=\lambda\left(1-P_{B}\right)=\lambda \frac{1+3 \rho+\rho^{2}}{1+3 \rho+6 \rho^{2}+2 \rho^{3}}$

Since $N_{q}=p_{21}+p_{22}=\frac{\rho^{2}(5+2 \rho)}{1+3 \rho+6 \rho^{2}+2 \rho^{3}}$, we get $W_{q}=\frac{\rho^{2}(5+2 \rho)}{\lambda\left(1+3 \rho+\rho^{2}\right)}$
The Laplace Transform of the effective overall service distribution will be given by

$$
\begin{aligned}
L_{B}(s) & =0.5\left(\frac{2 \mu}{s+2 \mu}\right) \sum_{i=0}^{\infty}\left[0.5\left(\frac{2 \mu}{s+2 \mu}\right)\left(\frac{\mu}{s+\mu}\right)\right]^{i} \\
& =\frac{\mu(s+\mu)}{\left(s^{2}+3 \mu s+\mu^{2}\right)}
\end{aligned}
$$

2. This is the same server model as the one considered in Problem 1, except that arrivals now come from a batch process where a batch will have either one or two jobs with probability 0.5 each.

With this modification, the state transition diagram of Problem 1 may be modified to give the new state transition diagram shown below.

State Transition Diagram
The balance equations will then be

$$
\begin{aligned}
& \lambda p_{0}=\mu p_{11}=(0.5 \lambda+\mu) p_{12} \\
& 0.5 \lambda\left(p_{11}+p_{12}+p_{0}\right)=\mu p_{21} \\
& p_{22}+p_{12}=p_{11}+p_{21}
\end{aligned}
$$

which gives

$$
\begin{aligned}
& p_{11}=\rho p_{0} \quad p_{12}=\frac{2 \rho}{2+\rho} p_{0} \\
& p_{21}=\frac{\rho\left(2+5 \rho+\rho^{2}\right)}{2(2+\rho)} p_{0} \quad p_{22}=\frac{\rho\left(2+7 \rho+\rho^{2}\right)}{2(2+\rho)} p_{0}
\end{aligned}
$$

Applying the normalization condition to this, we get

$$
p_{0}=\frac{2+\rho}{2+7 \rho+7 \rho^{2}+\rho^{2}}
$$

In this case, the total job flow offered will be $0.5 \lambda+(0.5)(2 \lambda)=1.5 \lambda$
Of this, the total flow blocked will be $\left[\left(p_{11}+p_{12}\right)(0.5)(2 \lambda)+\left(p_{21}+p_{22}\right)\right.$ $\{(0.5) \lambda+(0.5)(2 \lambda)\}]=\lambda\left[p_{11}+p_{12}+1.5\left(p_{21}+p_{22}\right)\right]$.

Therefore the ratio of blocked jobs will be $\left[p_{11}+p_{12}+1.5\left(p_{21}+p_{22}\right)\right] / 1.5$.

