## EE 679, Queueing Systems (2001-02F) Solutions to Test -1

1. The balance equations for this system may be written as follows

$$
\begin{aligned}
& \lambda p_{0}=\mu p_{1} \\
& \lambda p_{i}=\mu p_{i+1} \quad i=1, \ldots \ldots,(K-1)
\end{aligned}
$$

which gives the state probabilities as $p_{i}=\rho^{i} p_{0} \quad i=1, \ldots ., K$. Using the normalization condition, we will get the actual state probabilities as

$$
p_{i}=\frac{(1-\rho) \rho^{i}}{1-\rho^{K+1}} \quad i=0,1, \ldots \ldots, K
$$

The mean number $N$ in the system will be

$$
N=\sum_{k=0}^{K} k p_{k}=\frac{\rho\left[1-(1+K) \rho^{K}+K \rho^{K+1}\right]}{\left(1-\rho^{K+1}\right)(1-\rho)}
$$

and the probability that an arrival will leave without service will be $p_{K}=\frac{\rho^{K}(1-\rho)}{\left(1-\rho^{K+1}\right)}$

Note that since this is a finite buffer queue, it would always be stable.
2. Consider the balance equations for the states $1^{\prime}, 2^{\prime}$ $\qquad$ etc.. These are

$$
\lambda p_{1^{\prime}}=0.5 \lambda p_{0} \quad \lambda p_{2^{\prime}}=0.5 \lambda p_{1^{\prime}} \cdots \ldots \ldots . \lambda p_{n^{\prime}}=0.5 \lambda p_{(n-1)^{\prime}} \cdots \ldots \ldots .
$$

giving $p_{n^{\prime}}=(0.5)^{n} p_{0} \quad n=1,2, \ldots \ldots \ldots \infty$

Note that $\sum_{n=1}^{\infty} p_{n^{\prime}}=0.5 p_{0} \frac{1}{1-0.5}=p_{0}$

Now consider the balance equations for the others states. These are

$$
\lambda p_{0}=\mu p_{1} \quad \lambda p_{1}+0.5 \lambda p_{1^{\prime}}=\mu p_{2} \quad \ldots \ldots . . \quad \lambda p_{n-1}+0.5 \lambda p_{(n-1)^{\prime}}=\mu p_{n}
$$

Using $\rho=\frac{\lambda}{\mu}$, we get that

$$
\begin{aligned}
& p_{1}=\rho p_{0} \\
& p_{n}=\rho p_{n-1}+0.5 \rho p_{(n-1)^{\prime}} \quad n>1
\end{aligned}
$$

We can also observe that $\sum_{n=1}^{\infty} p_{n}=\frac{1.5 \rho}{1-\rho} p_{0}$

Applying the normalization condition yields

$$
2 p_{0}+\frac{1.5 \rho}{1-\rho} p_{0}=1 \quad \text { or } \quad p_{0}=\frac{1-\rho}{2-0.5 \rho}
$$

which may be used to find the individual state probabilities using the expressions given earlier.

