Priority Operation of The M/G/1 Queue

Copyright 2002, Sanjay K. Bose

1

Class 1 Lowest Priority Class

Head of Line (HOL) Priority Operation of M/G/1 Queue

Copyright 2002, Sanjay K. Bose

Non-Preemptive Priority

- •Consider an arrival of priority class j when the server is serving a job of lower priority class k, j > k.
- •The new arrival, in spite of being of a priority level higher than the current job in service, will not interrupt the on-going service.
- •Instead, it will join the queue (FCFS) at the end of the queue of its own priority class, i.e. Class j, and wait for the current job to finish service.
- •Normal HOL priority operation will resume once the on-going service is over

On-going service is not interrupted, even if there are new arrivals of higher priority

Work-conserving Discipline

Copyright 2002, Sanjay K. Bose

ļ

Preemptive Resume Priority

- •Consider an arrival of priority class j when the server is serving a job of lower priority class k, j > k.
- •The new arrival of class j will immediately preempt the lower priority job currently being served and will start its own service.
- •When service to the previously preempted class k job eventually resumes (possibly after service to the preempting job of class j and other jobs of priority higher than k), the service is resumed from the point where it was interrupted earlier.

On-going service interrupted by arrival of higher priority.

Work already done for the preempted job is remembered

Work-conserving Discipline

Copyright 2002, Sanjay K. Bose

5

Preemptive Non-Resume Priority

- •Consider an arrival of priority class j when the server is serving a job of lower priority class k, j > k.
- •The new arrival of class j will immediately preempt the lower priority job currently being served and will start its own service.
- •When service to the previously preempted class k job eventually resumes (possibly after service to the preempting job of class j and other jobs of priority higher than k), the service will start afresh without remembering the service that has already been provided.

On-going service interrupted by arrival of higher priority.

Work already done for the preempted job is not remembered

Work is not conserved

Copyright 2002, Sanjay K. Bose

- Arrival Process for Class i is Poisson with rate I_i i=1,...,P
- Arrival Processes of different classes independent of each other
- ullet The overall arrival process will also be Poisson with rate $oldsymbol{I}$

$$\boldsymbol{I} = \sum_{i=1}^{P} \boldsymbol{I}_{i}$$

Copyright 2002, Sanjay K. Bose

7

Service time for Class i has mean \overline{X}_i and second moment \overline{X}_i^2 with pdf $b_i(t)$, cdf $B_i(t)$ and L.T. of the pdf as $L_{bi}(s)$

Service times for the different classes assumed to be independent of each other

Traffic of priority class i $\mathbf{r}_i = \mathbf{I}_i \overline{X}_i$ i=1,...,P

Total Traffic
$$r = \sum_{i=1}^{p} r_i = I\overline{X}$$

where $\overline{X} = \sum_{i=1}^{p} \frac{I_i}{I} \overline{X}_i$ is the mean overall service time

Copyright 2002, Sanjay K. Bose

Condition for the P-Priority M/G/1 Queue to be Stable

 $r = \sum_{i=1}^{p} r_i < 1$

For Work-Conserving Queueing Disciplines

For multi-priority queues, it is possible for the queue to become unstable for lower priority traffic while still being stable for the higher priorities.

Copyright 2002, Sanjay K. Bose

Residual Life Analysis for a Non-Preemptive Priority M/G/1 Queue

Number of Priority Classes = P (Class 1 lowest priority)

 N_{qk} Number of class k jobs waiting in queue (prior to service)

 W_{qk} Mean waiting time in queue for jobs of priority class k

 $N_{qk} = \mathbf{I}_k W_{qk}$ (Little's Result for class k jobs)

R Mean Residual Service Time for job currently being served when an arrival (of any priority class) occurs

$$R = \frac{1}{2} \sum_{i=1}^{P} I_i \overline{X_i^2}$$
 (4.40)

We now consider each priority class separately, starting with the highest priority class P and ending with the lowest priority class 1

Copyright 2002, Sanjay K. Bose

11

Class P

$$W_{qP} = R + \overline{X}_P N_{qP}$$

leading to

$$W_{qP} = \frac{R}{1 - \mathbf{r}_{P}} \tag{4.41}$$

Copyright 2002, Sanjay K. Bose

Class P-1

$$W_{q(P-1)} = R + \overline{X}_P N_{qP} + \overline{X}_{P-1} N_{q(P-1)} + \overline{X}_P \boldsymbol{I}_P W_{q(P-1)}$$

leading to

$$W_{q(P-1)} = \frac{R}{(1 - \mathbf{r}_P)(1 - \mathbf{r}_P - \mathbf{r}_{P-1})}$$
(4.44)

Copyright 2002, Sanjay K. Bose

13

Class P-2

$$\begin{split} W_{q(P-1)} &= R + \overline{X}_P N_{qP} + \overline{X}_{P-1} N_{q(P-1)} + \overline{X}_{P-2} N_{q(P-2)} \\ &+ \overline{X}_P \mathbf{I}_P W_{q(P-2)} + \overline{X}_{P-1} \mathbf{I}_{P-1} W_{q(P-2)} \end{split}$$

leading to

$$W_{q(P-2)} = \frac{R}{(1 - \mathbf{r}_{P} - \mathbf{r}_{P-1})(1 - \mathbf{r}_{P} - \mathbf{r}_{P-1} - \mathbf{r}_{P-2})}$$
(4.46)

Copyright 2002, Sanjay K. Bose

Therefore, in general, we will get

$$W_{qP} = \frac{R}{1 - \mathbf{r}_{P}}$$

$$i = P$$

$$W_{q(P-i)} = \frac{R}{(1 - \sum_{j=0}^{i-1} \mathbf{r}_{P-j})(1 - \sum_{j=0}^{i} \mathbf{r}_{P-j})}$$

$$i = I,, (P-1)$$

$$W_i = W_{qi} + \overline{X}_i$$
 $i = 1, ..., (P-1)$ (4.48)

The parameters N_i and N_{qi} may then be found using Little's Result

Copyright 2002, Sanjay K. Bose

1.5

Residual Life Analysis for a Preemptive Resume Priority M/G/1 Queue

- ullet Consider P priority classes as before with class P of highest priority
- Jobs of priority classes 1,....., (P-1) may be interrupted by the arrival of new jobs with higher priority
- No loss of work as interrupted job resumes service from point of interruption
- Queueing Delay can be meaningfully defined only for Class *P*. For the lower priority classes, this parameter will not be important as a job's service can be interrupted even after it starts service
- The Residual Service Time seen by an arrival will depend on the class of the new arrival

Copyright 2002, Sanjay K. Bose

 R_k = Mean Residual Service Time as seen by a new job arrival of class k

$$R_{k} = \sum_{i=k}^{P} \frac{1}{2} \mathbf{I}_{i} \overline{X_{i}^{2}} \qquad k=1,...,P$$
 (4.49)

- Note that, as mentioned earlier, R_k depends on the class of the new arrival.
- An arrival of the highest priority class will see the smallest mean residual service time as it will preempt any ongoing service of priority class other than itself.
- Arrivals of lower priority class will only be able to preempt jobs of priority lower than themselves

Copyright 2002, Sanjay K. Bose

17

Class P

In this case, we can define a mean queueing delay W_{qP} as before

$$W_{qP} = R_P + \overline{X}_P N_{qP} \qquad \Longrightarrow \qquad W_{qP} = \frac{R_P}{1 - \mathbf{r}_P}$$

$$\tag{4.50}$$

$$W_{p} = W_{qP} + \overline{X}_{p} = \frac{\overline{X}_{p}(1 - \mathbf{r}_{p}) + R_{p}}{(1 - \mathbf{r}_{p})}$$
(4.51)

Mean Total Delay for Class P

Copyright 2002, Sanjay K. Bose

Class P-1

$$W_{P-1} = \overline{X}_{P-1} + \frac{R_{P-1}}{1 - r_P - r_{P-1}} + \overline{X}_P \mathbf{1}_P W_{P-1}$$

$$See Section 4.5.2 for the arguments justifying this term$$

$$(4.52)$$

This leads to

$$W_{P-1} = \frac{\overline{X}_{P-1}(1 - \mathbf{r}_{P} - \mathbf{r}_{P-1}) + R_{P-1}}{(1 - \mathbf{r}_{P})(1 - \mathbf{r}_{P} - \mathbf{r}_{P-1})}$$
(4.53)

Mean Total Delay for Class P-1

Copyright 2002, Sanjay K. Bose

19

In general, we will get

$$W_{p} = \frac{\overline{X}_{p}(1 - \mathbf{r}_{p}) + R_{p}}{(1 - \mathbf{r}_{p})}$$
 for Class P

$$W_k = \frac{\overline{X}_k (1 - \mathbf{r}_P - \dots - \mathbf{r}_k) + R_k}{(1 - \dots - \mathbf{r}_{k-1})(1 - \mathbf{r}_P - \dots - \mathbf{r}_k)}$$
for Class k , $1 \pounds k \pounds P - 1$

as the total mean delay for each class of customers

Copyright 2002, Sanjay K. Bose

Analysis of Multi-Priority M/G/1 Queue using the Imbedded Markov Chain Approach

- Though it is possible to do an analysis using this approach for the work-conserving priority disciplines, this is much more difficult than the way the mean performance results were obtained using a Residual Life Approach
- See Section 4.5.3 for the analysis of a 2-Priority M/G/I Queue following this approach.

Copyright 2002, Sanjay K. Bose