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M/G/1 Queue

with

Vacations
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Vacation: After a busy period, the server goes on vacation
of random length. It examines the queue once again when it

returns from the vacation

Single Vacation (per idle)

After a busy period ends, server
goes on only one vacation. If
system is still empty when in
returns, it stays and waits for a job
to arrive.

Multiple Vacations (possibly)

If system still empty when the server
returns from a vacation, it goes for
another vacation. This continues until
it finds system non-empty on return
from vacation; it then resumes service
normally

Other models are also possible, i.e. server goes on (possibly multiple)
vacations following the busy period until there are K waiting jobs
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Analysis of M/G/1 Queue with (Multiple) Vacations

Residual Life
Approach

Imbedded
Markov Chain

Approach

Vacation Interval
random (i.i.d) and
independent of
service times with
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Analysis using the Residual Life based Approach

Time τ

r(t)

r(t): Residual Time for the Currently Ongoing
       Service or Vacation Time
Xi: i

th service time Vj: j
th vacation time

X1

X1

X2 X3

X2 X3

X4

V1

V1 V2

V2

Residual Time r(τ) - service time or vacation - for a 
M/G/1 Queue with (multiple) Vacations



3

Copyright 2002, Sanjay K. Bose 5

Time Average of r(t) over (0, t) 2
)(

1

2
)(

10
2

11

2

11
)(

1
j

tL

j
i

tM

i

t

V
t

X
t

dxxr
t ∑∑∫

==

+==

M(t) = Number of arrivals in the interval (0,t)

L(t) = Number of vacation intervals in the interval (0,t)
where

For t→∞
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As for the basic M/G/1 queue considered earlier, this leads to
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as the mean waiting time in queue seen by an arriving customer

Knowing Wq, the other parameters Nq, N and W may be found
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Analysis using the Imbedded Markov Chain Approach

As for the basic M/G/1 queue, imbed Markov Chain of system
states (denoting the number in the system) at the time instants ti

i=1, 2, 3, ........ when the ith  customer departs from the system

ni = Number of jobs left behind in the system by the ith departure

ai = Number of job arrivals during the ith service time
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j = Number of jobs waiting for service when a busy period 
begins,   j≥1

fj = P{j customers starting the busy period}   j=1,2,…..,∞
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Relating the state at the ith  and (i+1)th  instants, we get

(4.4)

(4.5)

zzA

zF
zApzP

pzzpEzAzP

zEzEzEzP

n
n

nj

nUjnanUjan

−
−

=⇒

+=

==

∑
∞

=

−−

−+−−+−+

)(

)(1
)()(

}{)()(

}{}{}{)(

0

1

11
0

)](1[1)](1[1

or

Copyright 2002, Sanjay K. Bose 10

zzA

zF
zApzP

−
−

=
)(

)(1
)()( 0Evaluating at z=1, i.e. using P(1)=1, gives

)1(

1
0 F

p
′
−

=
ρ

(4.9)

and therefore
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Note that though P(z) was derived for the customer departure instants,
it will also hold for the arrival instants and at an arbitrary time instant
under equilibrium conditions.
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• From P(z), we can find the system state distribution either by inverting
the generating function P(z) or by expanding it in powers of z

• The moments of the number in the system may be found directly using
the moment generating properties of the generating function P(z).

• Specifically, we get
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• Knowing N,  we can obtain W, Wq and Nq following our usual approach
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M/G/1 Queue with only one Vacation after Idle  (Section 4.2)
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M/G/1 Queue with Exceptional First Service  (Section 4.3)

In this queue, the first customer starting a busy period requires
a service time with a different distribution, i.e. b*(t) and LB*(s)
with moments       and*X 2*X

An imbedded Markov Chain analysis will give
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The delay distribution for the FCFS case, may be found using  

P(z)=LT(λ -λz).

This may then be used to find W and Wq

Alternatively, these may be found using a Residual Life Approach
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