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Departure Process from a M/M/m/∞∞ Queue
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Knowledge of the nature
of the departure process
from a queue would be
useful as we can then use
it to analyze simple cases
of queueing networks as
shown.

The key result here is that the departure process from a M/M/m/∞
queue is also Poisson with the same rate as the arrival rate entering the
queue.

It should also be noted that the result of randomly splitting or
combining independent Poisson processes also yields a Poisson process
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The result on the departure process of a M/M/m/∞ queue follows
from Burke’s Theorem. This theorem states that -

[A] The departure process from a M/M/m/∝ queue is Poisson in
nature.

[B]  For a M/M/m/∝ queue, at each time t, the number of customers
in the system is independent of the sequence of departure times
prior to t.

[C] For a M/M/m/∝ FCFS queue, given a customer departure at
time t, the arrival time of this customer is independent of the
departure process prior to t.
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Time Reversibility Property of  Irreducible, Aperiodic Markov
Chains

Consider a discrete time, irreducible, aperiodic Markov Chain X1, X2,
......, Xn-1, Xn, Xn+1, ........ for which the transition probabilities are
given to be {pij}.
Now consider the same chain backwards in time, i.e. the chain
......Xn+1, Xn,  ......, X3, X2, X1. This would also be a Markov Chain
since we can show that

*

1221

1221

221

221

221

}|,......,{}{

},|,......,{},{

},......,,{

},......,,,{

},......,,|{

ij
i

jij

mkkmmm

mmkkmmmm

kkmmm

kkmmmm

kkmmmm

p
p

pp

iXiXiXPiXP

iXjXiXiXPiXjXP

iXiXiXP

iXiXiXjXP

iXiXiXjXP

==

====
======

=

===
====

=

====

++++

++++

+++

+++

+++

State Transition Probability of the Reverse Chain
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The Markov Chain is considered to be time reversible for the
special case where pij

*=pij ∀ i, j.

The reverse chain will have the following properties -

• The reversed chain is also irreducible and aperiodic like the
forward chain

• The reversed chain has the same stationary state distribution as
the forward chain

• The chain is time reversible only if the detailed balance equation
pipij = pjpji holds for ∀ i, j≥ 0
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How can we handle queues where the service time distribution is
not exponential?

[A] If we can express the actual service time as combinations of
exponentially distributed time intervals, then the Method of
Stages may be used. (Section 2.9)

[B] The M/G/1 queue and its variations may be analyzed.
(Chapters 3 and 4)

[C] Approximation methods may be used if the mean and
variance of the service time are given.  (GI/G/m approximation
of Section 6.2)
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Method of Stages
Consider a M/-/1/∞ example where
the actual service time is the sum of
two random variables, each of which
is exponentially distributed.

λ
Stage 1

1/µ1

Stage 2
1/µ2

State of the system represented as (n, j) where n is the total number of
customers in the system where the customer currently being served is at
Stage j, n=0,1,......,∞, j=1, 2

State (0,0) represents the state when the system is empty
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Diagram of the
System
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(2.38)
Balance Equations for

the System

These Balance Equations may be solved along with the appropriate
Normalization Condition to obtain the state probabilities of the
system.

Once these are known, performance parameters of the queue may
be appropriately evaluated.
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The method illustrated for the M/-/1/∞ example may be extended for the
following types systems.

1. Have k stages of service times - more rows in the state transition
diagram

2. Finite Number of Waiting Positions in the Queue - make the arrival
rate a function of the number in the system and make it go to zero
once all the waiting positions have been filled

3. Multiple Servers - approximate this by allowing more than one job
to enter service at a time

4. More General Service Time Distributions - see next slide
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For more general service time distributions, the Method of Stages
may be used if the Laplace Transform of the pdf of the service time
may be represented as a rational function of s, LB(s)=N(s)/D(s), with
simple roots.
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With multiple stages like this, the L.T.
of the service time pdf will be of the
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This leads to -
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Given a service time pdf as LB(s)=N(s)/D(s) with simple roots -

1. Obtain the multiple stage representation in the form shown
earlier

2. Draw the corresponding state transition diagram and identify
the flows between the various states

3. Write and solve the flow balance equations along with the
normalization condition to obtain the state probabilities

4. Use the state probabilities to obtain the required perfromance
parameters
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Queues with Bulk (or Batch) Arrivals (Section 2.10)

• Batches arriving as a Poisson process with exponentially
distributed inter-arrival times between batches

• Batch size = Number of jobs in a batch (random variable)

M[X]   Poisson Batch Arrival Process

λ = Average Batch Arrival
       Rate

βr = P{r jobs in a batch}    r=1,2,….
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The M[X]/M/1 Queue
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Balance
Equations

Though these may be solved in the standard fashion,
we will consider a solution approach for directly
obtaining P(z), the Generating Function for the
number in the system. For this, we would need to
multiply the kth  equation above by zk and sum from
k=1 to k=∝.
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Note that, P(1)=1 is effectively the same as the Normalization
Condition. Using this, we get ρ−=10p
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We can invert P(z) or expand it as a power series in zi i=0,1,… to
get the state probability distribution. The mean number N in the
system may be directly calculated from P(z) as -
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The M[X]/-/-/K Queue Batch Arrival Queue with Finite Capacity

For operating queues of this type, one must also specify the batch
acceptance strategy to be followed if a batch of size k or more arrrives in
a system where the number of waiting positions available is less than k.

Partial Batch
Acceptance Strategy

(PBAS)

Randomly choose as
many jobs from the batch
as may be accommodated

in the buffer

Whole Batch
Acceptance Strategy

(WBAS)

Accept the batch only if
all its jobs may be
accommodated;

otherwise, reject all jobs
of the batch
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M[X}/M/-/- types of queues may be operated and
analyzed under either the PBAS or the WBAS strategy

See Section 2.10 where this analysis is done for a
M[X}/M/s/s queue. The state distribution for this

queue are given by
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