Basic Queueing Theory
 M/M/-/- Type Queues

Kendall's Notation for Queues

A/B/C/D/E

Shorthand notation where A, B, C, D, E describe the queue Applicable to a large number of simple queueing scenarios

Little's Result

$N=\lambda W$
$N_{q}=\lambda W_{q}$

$$
\begin{aligned}
& \hline \begin{array}{l}
\text { Result holds in general for virtually all types of queueing } \\
\text { situations where } \\
\lambda=\text { Mean arrival rate of jobs that actually enter the system } \\
\hline
\end{array} \\
& \hline
\end{aligned}
$$

Jobs blocked and refused entry into the system will not be counted in λ

Little's Result

Graphical Illustration/Verification of Little's Result

Little's Result

Consider the time interval $(0, t)$ where t is large, i.e. $t \rightarrow \infty$
Area $(t)=$ area between $\alpha(t)$ and $\beta(t)$ at time $t=\int_{0}^{t}[\alpha(t)-\beta(t)] d t$
Average Time W spent in system $=\lim _{t \rightarrow \infty} \frac{\operatorname{Area}(t)}{\alpha(t)}$
Average Number N in system $=\lim _{t \rightarrow \infty} \frac{\operatorname{Area}(t)}{t}=\lim _{t \rightarrow \infty} \frac{\alpha(t)}{t} \frac{\operatorname{Area}(t)}{\alpha(t)}$
Since, $\quad \lambda=\lim _{t \rightarrow \infty} \frac{\alpha(t)}{t} \quad$ Therefore, $N=\lambda W$

The PASTA Property
 "Poisson Arrivals See Time Averages"

$p_{k}(t)=\mathrm{P}\{$ system is in state k at time $t\}$
$q_{k}(t)=\mathrm{P}\{$ an arrival at time t finds the system in state $k\}$
$N(t)$ be the actual number in the system at time t
$A(t, t+\Delta t)$ be the event of an arrival in the time interval $(t, t+\Delta t)$

Then

$$
\begin{aligned}
q_{k}(t) & =\lim _{\Delta t \rightarrow 0} P\{N(t)=k \mid A(t, t+\Delta t\} \\
& =\lim _{\Delta t \rightarrow 0} \frac{P\{A(t, t+\Delta t|N(t)=k|\} P\{N(t)=k\}}{P\{A(t, t+\Delta t\}}=p_{k}(t)
\end{aligned}
$$

because $\mathrm{P}\{A(t, t+\Delta t) \mid N(t)=k\}=\mathrm{P}\{A(t, t+\Delta t)\}$

Equilibrium Solutions for M/M/-/- Queues

Method 1: Obtain the differential-difference equations as in Section 1.2 or Section 2.2. Solve these under equilibrium conditions along with the normalization condition.

Method 2: Directly write the flow balance equations for proper choice of closed boundaries as illustrated in Section 2.2 and solve these along with the normalization condition.

Method 3: Identify the parameters of the birth-death Markov chain for the queue and directly use equations (2.7) and (2.8) as given in Section 2.2.

In the following, we have used this approach

M/M/1 (or M/M/1/ ∞) Queue

$$
\begin{aligned}
& \left.\begin{array}{rl}
\lambda_{k}=\lambda & \\
\mu_{k}=0 \\
=\mu
\end{array} \quad \begin{array}{ll}
k=0 \\
k=1,2,3, \ldots \ldots .
\end{array}\right\} \quad \begin{array}{l}
\text { For } \rho<1 \\
p_{k}=p_{0}\left(\frac{\boldsymbol{\lambda}}{\mu}\right)^{k}=p_{0} \rho^{k} \\
p_{0}=(1-\rho)
\end{array} \\
& N=\sum_{i=0}^{\infty} i p_{i}=\sum_{i=0}^{\infty} i \rho^{i}(1-\rho)=\frac{\rho}{1-\rho} \quad W=\frac{N}{\lambda}=\frac{1}{\mu(1-\rho)} \\
& W_{q}=W-\frac{1}{\mu}=\frac{\rho}{\mu(1-\rho)} \quad N_{q}=\lambda W_{q}=\frac{\rho^{2}}{(1-\rho)} \\
& \text { Using } \\
& \text { Little's } \\
& \text { Result } \\
& \text { Using } \\
& \text { Little's } \\
& \text { Result }
\end{aligned}
$$

M/M/1/ ∞ Queue with Discouraged Arrivals

$$
\begin{aligned}
& \left.\begin{array}{ll}
\lambda_{k}=\frac{\lambda}{k+1} & \forall k \\
\mu_{k}=0 & k=0
\end{array}\right\} \begin{array}{l}
\text { For } \rho=\lambda \mu<\infty \\
p_{k}=p_{0} \prod_{i=0}^{k-1} \frac{\lambda}{\mu(i+1)}=p_{0}\left(\frac{\lambda}{\mu}\right)^{k} \frac{1}{k!}
\end{array} \\
& \begin{aligned}
\mu_{k} & =0 & & k=0 \\
& =\mu & & k=1,2,3, \ldots \ldots .
\end{aligned} \quad p_{0}=\exp \left(-\frac{\lambda}{\mu}\right) \\
& N=\sum_{k=0}^{\infty} k p_{k}=\frac{\lambda}{\mu} \quad \lambda_{\text {eff }}=\sum_{k=0}^{\infty} \lambda_{k} p_{k}=\mu\left[1-\exp \left(-\frac{\lambda}{\mu}\right)\right] \\
& \left.\left.W=\frac{N}{\lambda_{\text {eff }}}=\frac{\lambda}{\mu^{2}\left[1-\exp \left(-\frac{\lambda}{\mu}\right)\right]}\right\} \begin{array}{l}
\text { Little's } \\
\text { Result }
\end{array}\right\} \begin{array}{c}
\text { Effective Arrival } \\
\text { Rate }
\end{array}
\end{aligned}
$$

M/M/1/ ∞ Queue with Discouraged Arrivals
In this case, PASTA is not applicable as the overall arrival process is not Poisson
$\pi_{r}=\mathrm{P} \underset{\text { (before joining the system) }\}}{\text { arriving customer sees } r \text { in system }} \quad P\left\{E_{i}\right\}=p_{i}=e^{-\lambda / \mu}\left(\frac{\lambda}{\mu}\right)^{i} \frac{1}{i!}$
ΔE be the event of an arrival in $(t, t+\Delta t)$
E_{i} is the event of the system being in state $i \quad P\left\{\Delta E \mid E_{i}\right\}=\frac{\lambda \Delta t}{i+1}$
$\pi_{r}=P\left\{E_{r} \mid \Delta E\right\}=\frac{P\left\{E_{r}\right\} P\left\{\Delta E \mid E_{r}\right\}}{P\{\Delta E\}}=\frac{P\left\{E_{r}\right\} P\left\{\Delta E \mid E_{r}\right\}}{\sum_{i=0}^{\infty} P\left\{E_{i}\right\} P\left\{\Delta E \mid E_{i}\right\}}$
$\pi_{r}=\left(\frac{\lambda}{\mu}\right)^{r+1} \frac{1}{(r+1)!}\left(\frac{e^{-\lambda / \mu}}{1-e^{-\lambda / \mu}}\right) \quad W=\sum_{k=0}^{\infty} \frac{k+1}{\mu} \pi_{k}=\frac{\lambda}{\mu^{2}\left(1-e^{-\lambda / \mu}\right)}$
$\mathbf{M} / \mathbf{M} / \mathbf{m} / \infty$ Queue (m servers, infinite number of waiting positions)

$$
\begin{align*}
& \begin{array}{rlrl}
\lambda_{k}=\lambda & \forall k & \mu_{k} & =k \mu \\
& =m \mu & & 0 \leq k \leq(m-1) \\
& k \geq m
\end{array} \\
& \text { For } \rho=\lambda \mu<m \quad p_{k}=p_{0} \frac{\rho^{k}}{k!} \quad \text { for } \quad k \leq m \\
& \text { Erlang's }=p_{0} \frac{\rho^{k}}{m!m^{k-m}} \text { for } k>m \tag{2.16}\\
& \text { C-Formula } \\
& p_{0}=\left(\sum_{k=0}^{m-1} \frac{\rho^{k}}{k!}+\frac{m \rho^{m}}{m!(m-\rho)}\right)^{-1} \tag{2.17}
\end{align*}
$$

$P\{$ queueing $\}=\sum_{k=m}^{\infty} p_{k}=C(m, \rho)=p_{0} \frac{m \rho^{m}}{m!(m-\rho)}$

$\mathrm{M} / \mathrm{M} / \mathrm{m} / \mathrm{m}$ Queue (m server loss system, no waiting)

$\mathrm{M} / \mathrm{M} / \mathrm{m} / \mathrm{m}$ Queue (m server loss system, no waiting)

Simple model for a telephone exchange where a line is given only if one is available; otherwise the call is lost

Blocking Probability $B(m, \rho)=\mathrm{P}\{$ an arrival finds all servers busy and leaves without service \}
$B(m, \rho)=p_{0} \frac{\rho^{m}}{m!} \quad$ Erlang's B-Formula
$B(0, \rho)=1 \quad B(m, \rho)=\frac{\frac{\rho B(m-1, \rho)}{m}}{1+\frac{\rho B(m-1, \rho)}{m}}$

M/M/1/K Queue (single server queue with K-1 waiting positions)
$\lambda_{k}=\lambda \quad k<K$
$=0 \quad$ otherwise (Blocking or Loss Condition)
$\mu_{k}=\mu \quad k \leq K$
$=0 \quad$ otherwise

For
$\rho=\frac{\lambda}{\mu}<\infty$

$$
\left\{\begin{array}{rlr}
p_{k} & =p_{0} \rho^{k} & \text { for } k \leq K \tag{2.23}\\
& =0 & \text { otherwise } \\
p_{0} & =\frac{(1-\rho)}{\left(1-\rho^{K+1}\right)} &
\end{array}\right.
$$

M/M/1/-/K Queue (single server, infinite number of waiting positions, finite customer population K)
$\lambda_{k}=\lambda(K-k) \quad k<K$
$=0 \quad$ otherwise (Blocking or Loss Condition)
$\mu_{k}=\mu \quad k \leq K$
$=0 \quad$ otherwise

For

$$
\begin{equation*}
p_{k}=p_{0} \rho^{k} \frac{K!}{(K-k)!} \quad k=1, \ldots \ldots, K \tag{2.25}
\end{equation*}
$$

$\rho=\frac{\lambda}{\mu}<\infty$

$$
\begin{equation*}
p_{0}=\frac{1}{\sum_{k=0}^{K} \rho^{k} \frac{K!}{(K-k)!}} \tag{2.26}
\end{equation*}
$$

Delay Analysis for a FCFS M/M/1/ ∞ Queue

(Section 2.6.1)
Q: Queueing Delay (not counting service time for an arrival $\operatorname{pdf} f_{Q}(t), \operatorname{cdf} F_{Q}(t), L_{Q}(s)=L T\left(f_{Q}(t)\right\}$
$W=Q+T \quad W: \quad$ Total Delay (waiting time and service time) for an arrival $\operatorname{pdf} f_{W}(t), \operatorname{cdf} F_{W}(t), L_{W}(s)=L T\left(f_{W}(t)\right\}$

T: Service Time
$f_{T}(t)=\mu e^{-\mu t} \quad F_{T}(t)=e^{-\mu t} \quad L_{T}(s)=\frac{\mu}{(s+\mu)}$
$\begin{aligned} & \text { Since } \\ & Q \perp T\end{aligned} \quad L_{W}(s)=\frac{\mu}{(s+\mu)} L_{Q}(s) \quad f_{W}(t)=f_{Q}(t) *\left[\mu e^{-\mu t}\right]$
Knowing the distribution of either W or Q, the distribution of the other may be found

For a particular arrival of interest -
$F_{Q}(t)=\mathrm{P}\{$ queueing delay $\leq t\}$
$=\mathrm{P}\{$ queueing time $=0\}+\left[\Sigma_{n \geq 1} \mathrm{P}\right.$ \{queueing time $\leq t \mid$ arrival found
n jobs in system $\}] p_{n} \quad$ Erlang-n distribution for sum of n exponential r.v.s
$F_{Q}(t)=(1-\rho)+(1-\rho) \sum_{n=1}^{\infty} \rho^{n} \int_{x=0}^{t} \frac{\mu(\mu x)^{n-1}}{(n-1)!} e^{-\mu x} d x$
$=(1-\rho)+(1-\rho) \rho \int_{0}^{t} \mu e^{-\mu x} \sum_{n=1}^{\infty} \frac{(\mu x \rho)^{n-1}}{(n-1)!} d x$
$=(1-\rho)+(1-\rho) \rho \int_{0}^{t} \mu e^{-\mu x(1-\rho)} d x=(1-\rho)+\rho\left(1-e^{-\mu t(1-\rho)}\right)$
$f_{Q}(t)=\frac{d F_{Q}(t)}{d t}=\delta(t)(1-\rho)+\lambda(1-\rho) e^{-\mu t(1-\rho)}$
$f_{W}(t)=(1-\rho) \mu e^{-\mu t}+\lambda(1-\rho) \mu \int_{0}^{t} e^{-\mu(1-\rho)(t-x)} e^{-\mu x} d x=(\mu-\lambda) e^{-(\mu-\lambda) t}$

- PASTA applicable to this
queue
- N and N_{Q} seen by an arrival
same as the time-averaged
values

Arrival/Departure of Customer/Job of Interest from a FCFS M/M/1Queue

Let
$N^{*}=$ Number in the system that a job will see left behind when it departs $p_{n}{ }^{*}=P\left\{N^{*}=n\right\}$ for $N^{*}=0,1, \ldots, \infty$

For a FCFS queue, number left behind by a job will be equal to the number arriving while it is in the system.

An important general observation can also be made along the lines of Eq. (2.36).

Consider the number arriving from a Poisson process with rate λ in a random time interval T where $L_{T}(s)=L T\left\{f_{T}(t)\right\}$. The generating function $G(z)$ of this will be given by

$$
G(z)=L_{T}(\lambda-\lambda z)
$$

and the mean number will be $E\{N\}=\lambda E\{T\}$

This result will be found to be useful in various places in our

 subsequent analysis.
Delay Analysis for the FCFS M/M/m/ \propto Queue

(Section 2.6.2)

Using an approach similar to that used for the $\mathrm{M} / \mathrm{M} / 1$ queue, we obtain the following
$f_{Q}(t)=\left\{1-p_{0}\left[\frac{m \rho^{m}}{m!(m-\rho)}\right]\right\} \delta(t)+\left[\frac{\mu p_{0} \rho^{m} e^{-\mu(m-\rho) t}}{(m-1)!}\right] u(t)$
$f_{W}(t)=\left\{1-p_{0}\left[\frac{m \rho^{m}}{m!(m-\rho)}\right]\right\} \mu e^{-\mu t}-\left[\frac{\mu p_{0} \rho^{m}\left[e^{-\mu(m-\rho) t}-e^{-\mu t}\right]}{(m-1)!(1-m-\rho)}\right]$

See Section 2.6.2 for the details and the intermediate steps

