Basic Queueing Theory
M/M/-/- Type Queues
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Kendall’s Notation for Queues

A/BIC/ID/IE

Shorthand notation where A, B, C, D, E describe the queue

Applicableto alarge number of simple queueing scenarios
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Kendall’s Notation for Queues A/B/C/D/IE

M exponential
Inter-arrival timedistribution] : D deterministic

Service time distribution E, Erlangian (order k)
G generd

Number of servers

O 0O ©m >

Maximum number of jobs that can be there in the
system (waiting and in service)

Default ¥ for infinite number of waiting positions
E Queueing Discipline (FCFS, LCFS, SIRO etc.)
Defaultis FCFS

M/M/1 or M/M/1/¥% Single server queue with Poisson arrivals,
exponentially distributed service times and infinite number of
waiting positions
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Little'sResult
N=I W (2.9)
N=1 W, (2.10)

Result holds in general for virtually al types of queueing
situations where

| = Mean arrival rate of jobs that actually enter the system

Jobs blocked and refused entry into the system will not be
counted in |
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Little's Result

A — a(t), Arrivalsin (0,t)
--------- b(t), Departuresin (0,t)

Number of customers
(arrivals/departures)
<4+ zZp

l increments by
one

<>

Timet
Graphical Illustration/Verification of Little's Result
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Little's Result

Consider thetime interval (0,t) wheretislarge, i.e. t® ¥

t

Area(t) = areabetween a(t) and b(t) at timet = Ja (t) - b (t)]at
0

Average Time W spent in system = lim,q Ar%;)(t)
a
Average Number N in system = lim,g Areat) _ lim,gy aT(t)A;%;)(t)
Since, | =Iimt®¥$ Therefore, N=1W
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The PASTA

“ Poisson Arrivals See Time Averages’
Property

p(t) =P{systemisin statek at timet }

g.(t) =P{an arrival at timet finds the system in state k}

N(t) be the actual number in the system at time t

A(t, t+Dt) be the event of an arrival in the time interval (t, t+Dt)

G () =limge o P{N(®) = k| Alt,t + Dt}

Then
o P{A(t,t +Dt|N(t) =k }P{N(t) =k} _
=liMpe o P{A(t,t N Dt} =pe(t)
because P{A(t, t+Dt)|N(t) = k} = P{A(t, t+Dt)}
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Equilibrium Solutionsfor M/M/-/- Queues

Method 1: Obtain the differential-difference equations as in Section 1.2
or Section 2.2. Solve these under equilibrium conditions along with the
normalization condition.

Method 2: Directly write the flow balance equations for proper choice
of closed boundaries as illustrated in Section 2.2 and solve these along
with the normalization condition.

Method 3: Identify the parameters of the birth-death Markov chain for
the queue and directly use equations (2.7) and (2.8) as given in Section
2.2.

In the following, we have used this approach
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M/M/1 (or M/M/1/¥ ) Queue

Forr <1
I =l " K
o C') K
Pc = Po—= = Pof
m =0 k=0 mg
=m k:l,2,3 ........ _(1_ r)
Using
S N 1
N=§ip alr 'a- r)—— W:T:n‘(l-r) Little's
=0 =0 Result
w,=w- =" N, =1 W, =" E—?-t?g
q = I q- q ~ - ittle's
m md-r) (-r) Result
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M/M/1/¥ Queue with Discouraged Arrivals
| ) Forr =1 /m< ¥
= k+1 K 6 1
poO = Po = (219
n’(|+1) %mg k'
m, =0 k=0
—exp(- —
=m  k=123..... Po = &xp( m) (2.15)
J
F | 3 é
N=akpk=r—n st =@ | P =mal- exp(- —)g
k=0

i e—lu Little's
eff r'nz'\ - exp(- —)Q Result
m
e u

Effective Arrival
Rate
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M/M/1¥ Queue with Discouraged Arrivals

In this case, PASTA is not applicable as the overall arrival processis
not Poisson

1
it

GIIO_

= P{arriving customer seesrt insystem  P{E} =P, —e"”‘gm
(before joining the system)}
DE be the event of an arrival in (t, t+DX) | Dt
E; isthe event of the system being in statei P{DE|E}‘7

P(E,}P{DE|E} _ P{E}P{DE|E}

P =P(E, DB} === 0 =

é¥. P{E}P{DE|E}
i=0
r+1

@0 1 xe'™o W_é‘ k+1 |
gmﬂ (r+1)|§1 ellmB _a m pk_rnZ(l_ e—l/m)
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M/M/m/¥ Queue (m servers, infinite number of waiting
positions)

I =1 "k m, =km O£kE£(m- 1
=mm k3 m
rk
Forr =1 /m<m pk:pOF for kEm
o (2.16)
r
=P = for k>m
.
C-Formula 1 m ol
. WAL S (217)
ko KI m(m-r)5
P{queuein : P =C(m,r)=p mr 2.18
u = = )= Po— = .
{queueing} = 8 P T (218)
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M/M/m/m Queue (m server loss system, no waiting)

[ =1 k<m
=0 otherwise (Blocking or LossCondition)
m, =km OE£KEm
=0 otherwise
P« = Po—+ for KEm
For k! (2.19)
=0 otherwise
r=—<¥ < b, = 1
m 0T ;K (2.20)
&
_ =
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M/M/m/m Queue (m server loss system, no waiting)

Simple model for atelephone exchange where aline is given only
if oneisavailable; otherwise the call islost

Blocking Praobability B(m,r ) = P{an arrival finds all servers busy
and leaves without service}

m

r
Bm ) =po— Erlang’s B-Formula (2.21)
rB(m-1r)
B(O,r)=1 Bmr)=—M— (2.22)
14 rB(m-1r)
m
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M/M /1K Queue (single server queue with K-1 waiting
positions)

I =1 k<K
=0 otherwise (Blocking or Loss Condition)
m =m kEK
=0 otherwise
( k
For Pe = Pof for k.£ K (2.23)
=0 otherwise
LI 4 i
¥ P, = % (2.24)
\
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M/M/1/-IK Queue (single server, infinite number of
waiting positions, finite customer population K)

=1 (K-Kk) k<K
=0 otherwise (Blocking or LossCondition)
m =m kEK
=0 otherwise
r  K!
= Por k=1,.....K 2.25
For P = Po (K- k)! (225)
r _! <¥ P = ! (2.26)
m 5 K '
ar
oo (K- Kk)!
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Delay Analysisfor aFCFSM/M/1/¥ Queue
(Section 2.6.1)
Q: Queueing Delay (not counting service time for an arrival
pdf fo(t), cdf Fy(t), Lo(S) = LT(fo(t)}
W=Q+T | W: Tota Delay (waiting time and service time) for an arrival
pdf f,(t), cdf Fy(t), Lu(s) = LT(f, (1)}

T: ServiceTime
fr)=me™ F{t)=e™ L(9=

(S+ m)

i o8 fw®=fo®*[me™] (230)

Since

Knowing the distribution of either W or Q, the distribution of the
other may be found
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For a particular arrival of interest -

Fo(t) = P{queueing delay £ t}
= P{queueing time=0} + [S; P{queueing time£ t | arrival found

njobsin system}p, Erlang-n distribution for
y (o™ / sum of n exponential r.v.s
FQ(t):(1-r)+(1-r)é_r”c‘)( 0 ™ dix
n=1
wg (mer)™ (2.31)

:(1-r)+(1-r)r0na a _1)|

=(1-r)+@-r)r c‘jne'""(l'”dx:(l- r)y+r(l-e ™)

0

dFq () —d()(- 1)+ (- 1 )emED (2.32)

fo(t) =

f () = @- r)me ™ +1 (1- r)mep ™ e ™dx = (m- 1 )e ™

0
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Departure of

customer of
lnt‘e{&ﬂ * PASTA applicableto this
Time spent in system by the >
<+— customer of interest GREhe

* N and N, seen by an arrival
same as the time-averaged

values
Arrival of Arrivals coming while the
customer customer of interest isin the
of interest system

Arrival/Departure of Customer/Job of
Interest from a FCFS M/M/1Queue

Let

p.*=P{N'=n} for N'=0, 1,.....¥

N* = Number in the system that a job will seeleft behind when it departs
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Departure of
customer of
interest
Time spent in system by the A For a FCFS queue, number left

¢ customer of interest ’

behind by ajob will be equal
to the number arriving while it

isin the system.
Arrival of Arrivals coming while the
customer customer of interest isin the
of interest system
¥
G (A= gp =8 g A0 e g (2.36)
(=8 7', =8 2" -2 f (O -
n=0 n=0 t=0 n
¥
=2, (Ddt=L,( -12)

0

SR A C) ERCEVIC)| RRYY (2.37)
d z=1 ds s=0
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An important general observation can also be made along the lines
of Eq. (2.36).

Consider the number arriving from a Poisson process with rate |
in arandom time interval T where L{(S)=LT{f(t)}. The generating
function G(2) of thiswill be given by

G(2)=L.( - 12)

and the mean number will be E{N}= 1 E{T}

Thisresult will be found to be useful in various places in our
subsequent analysis.
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Delay Analysisfor the FCFS M/M/m/p Queue
(Section 2.6.2)

Using an approach similar to that used for the M/M/1 queue, we obtain
the following

en.por e m(m- r)tu

fo(t) = |1 pogm(—% ®+ e LU(t) (2.34)
, .m Errpr [ m(m-r)t _ - e ]U

f®=11- py 2.35

®= { pem(m )% S mpa-m-ny o @

See Section 2.6.2 for the details and the intermediate steps
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