

• Finding the normalization constant G(M) is important as it is required for obtaining the joint state probability distribution of the queueing network.

Other performance measures may then be found from the state distribution.

• For non-trivial values of K and/or M, direct computation of G(M) would not be feasible.

• The *Convolution Algorithm* provides an easy, numerical approach to finding G(M) recursively.

The algorithm finds G(1), G(2)G(M-1), G(M) in sequence

Knowing the intermediate values of G(.) help, as one can directly use them to compute performance measures, especially for networks of single server queues

Copyright 2002, Sanjay K. Bose

3

Some Useful Results for Closed Network of Single Sever Queues For the *K* queues, $j=1,\ldots,K$ $P\{n_j \ge n\} = u_j^n \frac{G(M-n)}{G(M)}$ (5.26) $\mathbf{r}_{j} = u_{j} \frac{G(M-1)}{G(M)}$ Actual (5.27)Utilization $\boldsymbol{l}_{j} = \boldsymbol{m}_{j} \boldsymbol{r}_{j} = \boldsymbol{m}_{j} \boldsymbol{u}_{j} \frac{G(M-1)}{G(M)}$ Actual (5.28)Throughput Mean Number in queue Q_i $E\{n_j\} = \sum_{m=1}^{M} u_j^m \frac{G(M-m)}{G(M)}$ (5.30)Copyright 2002, Sanjay K. Bose 4

Convolution Algorithm for Network of Single Server Queues (continued)		
• Initialization		
$g(0,k) = 1$ $g(n,1) = u_1^n$ $k=1,,K$ $n=1,,M$		
• Recursion $g(n,k) = g(n,k-1) + u_k g(n-1,k)$ (5.35)		
• Termination when $g(M,K)$ has been calculated $G(M)=g(M,K)$		
For $L=1,,(M-1)$, the intermediate steps of the recursion give $G(L)=g(L,K)$		
Copyright 2002, Sanjay K. Bose	6	

Flow-Balance Equations	$I_1^* = 0.2I_2^* + 0.4I_3^*$ $I_2^* = 0.5I_1^* + 0.6I_3^*$	
Choosing Q_1 as the refer	rence queue, solve flow balance for -	
Relative Throughputs	$\boldsymbol{l}_1^*=1, \boldsymbol{l}_2^*=1.5385, \boldsymbol{l}_3^*=1.7308$	
Relative Utilizations	$u_1 = 1, u_2 = 3.077, u_3 = 8.654$	
Visit Ratios	$V_1 = 1, V_2 = 1.5385, V_3 = 1.7308$	
Copyrigi	ht 2002, Sanjay K. Bose	10

State Probability Distribution	$P(n_1,n_2,n_3)$	$=\frac{1}{9767.26}(3.0^{\circ})$	$(8.654)^{n_2}$
	for n_1, n_2, n_3	$_{3}$ ³ 0, and $n_{1}+n_{2}$	$+n_3=4$
Actual Throughputs	$I_1 = 0.114,$	l ₂ = 0.1754,	$l_3 = 0.1973$
Mean Number in Queue	$N_1 = 0.1281,$	$N_2 = 0.5178,$	$N_3 = 3.3541$

MVA: Mean Value Analysis Algorithm	
• For a network of <i>K</i> queues with <i>M</i> jobs, M ^Y recursively - starting with zero jobs in the incrementally adding jobs until <i>M</i> jobs have be to the network	VA works e system, een added
 May be applied to networks of queues following the following service disciplines 	ng any of
FCFS, LCFS, PS (Processor Sharing) or IS Number of Servers)	(Infinite
• Service times must be exponentially distributed	d
Copyright 2002, Sanjay K. Bose	14

$N_j(n)$	Mean number of jobs in Q_j when there are a total of p_j
	in the network (this includes the job currently being
	served at Q_j
$W_{j}(n)$	Mean time spent by a job in the queue Q_j when there are
	<i>n</i> in the network (this is the total delay at Q_j including the
1 /	service time of the job)
1/ m j	Mean service time for a job at Q_j . Note that this will be
T/	the same regardless of the number of jobs in Q_j
V_{j}	VISIT Ratio of Q_j . This is as defined earlier.
v r	Vith Q_1 as the efference queue $V_i = \frac{I_i^*}{I_1^*}$ $i = 1,, K$ (5.18)

• Total average time spent by a job in the kth queue (i.e. Q_k) is given directly by W_k for k = 1,....,K using (5.42) for m=M (Note that this is the time spent per visit to Q_k)
• Queueing Delay for a job at Q_k for k = 1,....,K given by
• Queueing Delay for a job at Q_k for k = 1,....,K given by
• M_{qk} = 0 for IS queues (5.45)
= W_k - 1/m_k for FCFS, LCFS, PS queues
• Number in Q_k given by N_k=N_k(M) for k=1,....,K
• Throughput of the Network = 1 using (5.43) for m=M
• Actual Throughput of Q_k given by I_k = 1 V_k for k=1,....,K
• Number waiting in queue in Q_k given by N_{qk}=I_kW_{qk} for k=1,....,K

Step 2: Applying Little's Result	
Overall Throughput $I = \frac{m}{\sum_{k=1}^{K} W_k(m) V_k}$	(5.49)
Step 3: Update $N_k(m)$ for $k=1,\ldots,K$ as	
$N_k(m) = V_k \mathbf{I} W_k(m)$	(5.50)
Step 4: Update $p_k(j,m)$ for $k=1,\ldots,K$ as	
$p_k(j,m) = 1 - \sum_{i=1}^{K} p_k(i,m)$ for $j = 0$	(5.51)
$= \frac{Ip_{k}(j-1,m-1)}{m_{k}} \qquad for \ j = 1,,M$	
• Termination Terminate recursion when $m=M$ is reached	ed
Copyright 2002, Sanjay K. Bose	20

•Initialize N_{I}	$0) = N_2(0) = N_3(0) = 0$
• Do the MVA were obtained	A recursion for $m = 1$, 2, 3 and 4. (The following values at each step.)
m=1	$W_1(1) = 1, W_2(1) = 2, W_3(1) = 5$ I = 0.07855 $N_1(1) = 0.07855, N_2(1) = 0.2417, N_3(1) = 0.6798$
<i>m</i> =2	$W_1(2) = 1.07855, W_2(2) = 2.4834, W_3(2) = 8.399$ I = 0.1029 $N_1(2) = 0.11098, N_2(2) = 0.3932, N_3(2) = 1.49586$
	Copyright 2002, Sanjay K. Bose 24