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Open and Closed Networks

of

M/M/m Type Queues

(Jackson’s Theorem for Open and Closed
Networks)
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p1

Poisson Process
 Average Rate λ

Poisson
Rate λp1

pj

pN

Poisson
Rate λpj

Poisson
Rate λpN

Splitting a Poisson process probabilistically (as in random,
probabilistic routing) leads to processes which are also Poisson
in nature.
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1-p

p

Routing Probabilities are p and (1-p)

λ λ

λp λp

λ(1-p) λ(1-p)

Q1

Q2

Q3

Under equilibrium conditions,
average flow leaving the
queue will equal the average
flow entering the queue.

For M/M/m/∞ queues at equilibrium, Burke’s Theorem (Section 2.7) assures us
that the departure process of jobs from the network will also be Poisson. From
flow balance, the average flow rate leaving the queue will also be the same as
the average flow rate entering the queue.
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Poisson Process
Average Rate λ1

Poisson Process
 Average Rate λ2

Poisson Process
 Average Rate λ1+λ2

Combining independent Poisson processes leads to a process
which will also be Poisson in nature.
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λ1

λ2Example:

An Acyclic
(Feedforward)
Network of
M/M/m Queues

External arrivals with rates λ1
and λ2 from Poisson processes

Probabilistic routing with the routing probabilities as shown
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• Applying flow balance to each queue, we get

λQ1 = Average job arrival rate for Q1 = λ1
λQ2 = Average job arrival rate for Q2 = 0.4λ1+λ2
λQ3 = Average job arrival rate for Q3 = 0.4λ1
λQ4 = Average job arrival rate for Q4 = 0.84λ1+λ2

• Burke’s Theorem and the earlier quoted results on splitting and
combining of Poisson processes imply that, under equilibrium
conditions, the arrival process to each queue will be Poisson.

• Given the mean service times at each queue and using the standard
results for M/M/m queues, we can then find the individual state
probability distribution for each of the queues

• This process may be done for any system of M/M/m queues as long
as there are no feedback connections between the queues
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• It should be noted that this analysis can only give us the state
distributions for each of the individual queues but cannot really say
what will be the joint state distribution  of the number of jobs in all
the queues of the network.

• Jackson’s Theorem, presented subsequently, is needed to get the
joint state distribution. This gives the simple, and elegant result that -
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Product Form Solution for
Joint State Distribution of the

Queueing Network
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Jackson’s Theorem for Open Networks

• Jackson’s Theorem is applicable to a Jackson Network.

This is an arbitrary open network of M/M/m queues where jobs
arrive from a Poisson process to one or more nodes and are
probabilistically routed from one queue to another until they
eventually depart from the system.

The departures may also happen from one or more queues

The M/M/m nodes are sometimes referred to as Jackson Servers

• Jackson’s Theorem states that provided the arrival rate at each
queue is such that equilibrium exists, the probability of the overall
system state (n1…….nK) for K queues will be given by the product-
form expression
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Jackson Network:  Network of K (M/M/m) queues, arbitrarily 
    connected

External Arrival to Qi:      Poisson process with average rate Λi

At least one queue Qi must be such that Λi≠ 0. Note that Λj≠ 0 if
there are no external arrivals to Qj. This is because we are
considering an Open Network. (Closed Networks are considered
later).

Routing Probabilities:       pij = P{a job served at Qi is routed to Qj}
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1 = P{a job served at Qi exits from the network}
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Arrival Process of Jobs to Qi

= [External Arrivals, if any, to Qi]

    ∑
=

+
K

j 1

Jobs which finish service at Qj and are then
routed to Qi for the next stage of service

Let λi = Average Arrival Rate of Jobs to Qi {external and rerouted}

Given the external arrival rates to each of the K queues in the
system and the routing probabilities from each queue to another,
the effective job arrival rate to each queue (at equilibrium) may be
obtained by solving the flow balance equations for the network.
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Flow Balance Conditions at Equilibrium imply that -
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λλ for j=1,….., K (5.2)

• For an Open Network, at least one of the Λj’s will be non-zero
(positive)

• The set of K equations in (5.2) can therefore be solved to find
the effective job arrival rate to each of the K queues, under
equilibrium conditions.

• The network will be at equilibrium if each of the K queues are
at equilibrium. This can happen only if the effective traffic
offered to each queue is less than the number of servers in the
queue. i.e.  ρj = λ j /µj < mj   j=1,….., K  where mj is the number
of servers in Qj.
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For a network of this type with M/M/m/∞ queues (i.e. Jackson
Servers) at each node, Jackson's Theorem states that provided the
arrival rate at each queue is such that equilibrium exists, the
probability of the overall system state (n1,......., nK) will be -
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with pj(nj)=P{nj customers in Qj}

This individual queue state probability may be found by
considering the M/M/m/∞ queue at node j in isolation with its total
average arrival rate λj, its mean service time 1/µj and the
corresponding results for the steady state M/M/m/∞ queue
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Stability requirement for the existence of the solution of (5.4) is
that -

For each queue Qj  j=1,….., K in the network, the traffic offered
should be such that

j
j

j
j m<
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λ

ρ

where mj is the number of servers in the M/M/m/∞ queue at Qj
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Implications of Jackson’s Theorem - (extensions and generalizations
considered subsequently)

• Once flow balance has been solved, the individual queues may be
considered in isolation.

• The queues behave as if they are independent of each other (even
though they really are not independent of each other) and the joint state
distribution may be obtained as the continued product of the individual
state distributions (product-form solution)

• The flows entering the individual queues behave as if they are
Poisson, even though they may not really be Poisson in nature (i.e. if
there is feedback in the network).

Note that Jackson’s Theorem does require the external arrival
processes to be Poisson processes and the service times at each queue
to be exponentially distributed in nature with their respective,
individual means.
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Performance Measures

Total Throughput = ∑
=

Λ=
K

j
j

1

λ (5.5)

Average traffic load at  node j (i.e. Qj) = 
j

j
j µ

λ
ρ = (5.6)

Visit Count to node j =
λ

λ j
jV = (5.7)

These may also be obtained by directly solving the following
K linear equations -
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Scaled Flow Balance Equations
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Average number of jobs at node j = ∑
∞

=

=
0

)(
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jj kkpN (5.9)

Average number of jobs in system = ∑
=

=
K

j
jNN

1

(5.10)

Interpretation of the Visit Ratio Vj : Average number of times a job
will visit Qj  every time it actually enters the (open) queueing
network.

Mean Sojourn Time (W): The mean total time spent in the system
by a job before it leaves the network.
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When does the Product-Form Solution hold?

The product-form expression for the joint state
probabilities hold for any open or closed
queueing network where local balance conditions
are satisfied.

See Robertazzi’s book for an interesting
explanation for the conditions under which the
product-form expression in valid.
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Specifically, open or closed networks with the following types of
queues will have a product-form solution -

1. FCFS queue with exponential service times

2. LCFS queues with Coxian service times

3. Processor Sharing (PS) queues with Coxian service times

4. Infinite Server (IS) queues with Coxian service times

A Coxian service time has a distribution of the following type -
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Example: Open Jackson Network
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See Section 5.3 for more examples
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Extensions to Jackson’s Theorem for Open Networks

[A]  Jackson's Theorem with State dependent Service Rates at the
Queuing Nodes

For this, assume that the service times at Qj are exponentially distributed
with mean 1/µj(m) when there are m customers in Qj just before the
departure of a customer.

[B]  Queuing Networks with Multiple Customer Classes

For this, we need to assume that the service time distribution at a node
will be the same for all classes even though they may differ from one node
to another. The service times may be state dependent.

The external arrival rates and routing probabilities will vary from one
class of customers to another

See Section 5.4 for detailed formulation
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Closed Queueing Networks

• K queues - Q1, ......, QK  in the queueing network

• M jobs of the same class circulating in the network

• pij  be the routing probability from Qi to Qj  (probabilistic
routing)
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1

,......,11Since network is a closed network

• No arrivals from outside and no departures from the network

• Flow balance conditions for this network may still be written as

i
ijij ,......,∑λ
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• The K equations of (5.12) are not independent. Hence, they cannot
be solved to uniquely find the λjs for the K queues,  j=1,....., K

• Using any of the K-1 equations in (5.12), we can find the λj’s up to
a multiplicative constant

For this, assume that α(M) is an (unknown) scalar quantity
and let {λj

*} j=1,...,K be a particular solution of (5.12)
such that the true average arrival rates {λj(M)} j=1,....,K
are given by

 λj(M) = α(M)λj
*       j=1,….....,K                 (5.13)

•α(M) and {λj(M)} j=1,……..,K  are both functions of the
population size of M jobs circulating in the closed network

•However, {λj
*} j=1,…...,K  will be independent of M
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An alternate, but equivalent approach would be to do the
following -

• Choose any queue in the network (say Q1) as the reference
queue and assume that λ1

*=α
Any value of α  may be chosen!

A convenient choice is α=µ1 so that ρ1=λ1
*/µ1=1

• Solve the flow balance equations of (5.13) to obtain the
relative throughputs (λ2

*,λ3
*,.......,λK

*) in terms of α.
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• Assuming the service times to be exponentially distributed
(recall that we are assuming M/M/m type queues), we allow the
actual service rates at each queue to be state dependent

µj(m) = service rate at Qj when Qj is in state m
(exponential service times assumed)

• Using the relative throughputs {λj
*} j=1,…...,K found earlier,

we define the relative utilizations {uj} j=1,…...,K as -
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Let ni = Number in queue Qi

State Probability Vector )..,,.........(~
1 Knnn =

such that Mnn K =++ ...........1 Total number of jobs

Jackson’s Theorem for Closed Networks of M/M/- Type Queues
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(5.17)
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Example
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Example

Q1
M/M/1

Q2
M/M/1

q

p

1-q
1-p
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µ2

Closed Network with M jobs

P{Q1 is busy} = 1-P(0, M) =
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)1(

)(
1 2

MG

MG

MG

u M −
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P{Q2 is busy} = 1-P(M, 0) =
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u
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−
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Visit Ratios

The visit ratio Vi  of the ith queue Qi in the queueing network is
defined as the mean number of times Qi is visited by a job for
every visit it makes to a given reference queue, say Q1.

Note that the definition is basically the same as for an open
network.

With Q1 as the reference queue, 
*

1

*

λ

λi
iV = i=1,…., K

The same result will be obtained by setting V1 =1 and solving
the equations                   with                                andVPV

~~~ =⋅ ),.......,(
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Jackson’s Theorem for Closed Networks of Multi-Server Queues

Qi has si servers ),(min)( iiii smm µµµ =⇒ i=1,……, K

µi = service rate of a single server at Qi

µi (m) =overall (state dependent) service rate at Qi when it
has a total of m jobs (waiting and in-service)

K  exponential service queues in the closed network with
probabilistic routing given by Kjipij ,.......,1,){ =

Define
i

i
iu

µ
λ *

= where λi
* is the relative throughput for Qi
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Jackson’s Theorem for a Closed Network of Multi-Server Queues

Using these
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These expressions may be written in a simpler form for a Closed
Network of Single Server Queues with Exponential Service
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Service Times
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• The major computational difficulty with finding the state
probability distribution of a Closed Network is that of finding
the value of the normalization constant G(M)

This complexity increases rapidly with larger networks
(increasing values of K) and larger population of 
circulating jobs (increasing values of M)

• G(M) may be calculated directly only for very small networks
with a very small number of circulating jobs. For larger
networks, the Convolution Algorithm should be used to
calculate G(M).

• If mean performance parameters are desired (rather than the
actual state probability), then the Mean Value Algorithm may
be directly used to find these without finding G(M) at all.
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For a closed network of K single server queues with M jobs
circulating -
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Then
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fewer customers, i.e. G(M-n)
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Note that the departure rate from Qi will always be µi whenever
Qi has one or more jobs.

Therefore, the actual throughput λi of Qi will be given by
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The actual utilization  ρi of Qi will then be
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