Open and Closed Networks
of
M/M/m Type Queues

(Jackson’s Theorem for Open and Closed
Networks)
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Splitting a Poisson process probabilistically (as in random,
probabilistic routing) leads to processes which are also Poisson
in nature.
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Under equilibrium conditions,
average flow leaving the
queue will equal the average
flow entering the queue.
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Routing Probabilities are p and (1-p)

For M/M/m/¥ queues at equilibrium, Burke’'s Theorem (Section 2.7) assures us
that the departure process of jobs from the network will also be Poisson. From
flow balance, the average flow rate leaving the queue will also be the same as
the average flow rate entering the queue.
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Combining independent Poisson processes |eads to a process
which will aso be Poisson in nature.
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Example: - »
An Acyclic

(Feedforward) 11 — Q1
Network of —>»

M/M/m Queues I

External arrivals with rates | 1
and | 2 from Poisson processes

Probabilistic routing with the routing probabilities as shown
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» Applying flow balance to each queue, we get

| o = Averagejob arriva ratefor Q1 =11

| o = Averagejob arrival rate for Q2= 0.4 1+1 2

| o3 = Averagejob arrival rate for Q3=0.4 1

| o4 = Averagejob arrival rate for Q4 = 0.841 1+1 2

» Burke’'s Theorem and the earlier quoted results on splitting and
combining of Poisson processes imply that, under equilibrium
conditions, the arrival process to each queue will be Poisson.

» Given the mean service times at each queue and using the standard
results for M/M/m queues, we can then find the individual state
probability distribution for each of the queues

* This process may be done for any system of M/M/m queues as long
as there are no feedback connections between the queues
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* It should be noted that this analysis can only give us the state
distributions for each of the individua queues but cannot really say
what will be the joint state distribution of the number of jobs in all
the queues of the network.

« Jackson’s Theorem, presented subsequently, is needed to get the
joint state distribution. This gives the simple, and el egant result that -

P(n;,ny,n5,n,) = Py (M) Pz (N2) Pz (N3) Poa(ny)

Product Form Solution for
Joint State Distribution of the
Queueing Network
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Jackson’s Theorem for Open Networks

» Jackson's Theorem is applicable to a Jackson Network.

This is an arbitrary open network of M/M/m queues where jobs
arrive from a Poisson process to one or more nodes and are
probabilistically routed from one queue to another until they
eventually depart from the system.

The departures may aso happen from one or more queues

The M/M/m nodes are sometimes referred to as Jackson Servers

» Jackson's Theorem states that provided the arrival rate at each
queue is such that equilibrium exists, the probability of the overall
system state (n,.......n,) for K queues will be given by the product-
form expression

X
P(N,..... ’nK)=O Poi (M)
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Jackson Network: Network of K (M/M/m) queues, arbitrarily
connected

External Arrival to Q;:  Poisson process with averagerate L

At least one queue Q; must be such that L* O. Note that L;* O if
there are no externa arivals to Q. This is because we are
considering an Open Network. (Closed Networks are considered
later).

Routing Probabilities: p; = P{ajob served at Q, isrouted to Q}

ey i

K
- & p; (= P{ajob served at Q exits from the network}

=1

@™ S'D_{('D\
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Arrival Process of Jobsto Q,
= [Externa Arrivals, if any, to Q]

K
+ é Jobs which finish service at Q; and are then

i=1 routed to Q, for the next stage of service

Let|; = Average Arrival Rate of Jobsto Q, { external and rerouted}

Given the external arrival rates to each of the K queues in the
system and the routing probabilities from each queue to another,
the effective job arrival rate to each queue (at equilibrium) may be
obtained by solving the flow balance equations for the network.
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Flow Balance Conditions at Equilibrium imply that -

K
[]

I, =L;+alip; forj=1,...,K (5.2)
i=1

» For an Open Network, at |east one of the L;’s will be non-zero
(positive)

» The set of K equationsin (5.2) can therefore be solved to find
the effective job arrival rate to each of the K queues, under
equilibrium conditions.

* The network will be at equilibrium if each of the K queues are
a equilibrium. This can happen only if the effective traffic
offered to each queue is less than the humber of serversin the
queve.ie r;=1 ;/m<m j=1,..., K wherem isthe number
of serversin Q.
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For a network of this type with M/M/m/¥ queues (i.e. Jackson
Servers) at each node, Jackson's Theorem states that provided the
arrival rate at each queue is such that equilibrium exists, the

probability of the overall system state (n,,......., n,) will be-

£
P(n) = P(n,,......, nK)=O P; (nj) (54)
j=1

with p,(n)=P{n, customersin Q}

This individua queue state probability may be found by
considering the M/M/m/¥ queue at node j in isolation with its total
average arival rate |, its mean service time 1/m and the

corresponding results for the steady state M/M/m/¥ queue
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Stability requirement for the existence of the solution of (5.4) is
that -

For each queue Q; j=1,....., K\in the network, the traffic offered
should be such that

where m is the number of serversin the M/M/m/¥ queue at Q
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Implications of Jackson’s Theorem - (extensions and generalizations
considered subsequently)

» Once flow balance has been solved, the individua queues may be
considered inisolation.

» The queues behave as if they are independent of each other (even
though they really are not independent of each other) and the joint state
distribution may be obtained as the continued product of the individual
state distributions (product-form solution)

» The flows entering the individua queues behave as if they are
Poisson, even though they may not really be Poisson in nature (i.e. if
thereisfeedback in the network).

Note that Jackson's Theorem does require the external arrival
processes to be Poisson processes and the service times at each queue
to be exponentially distributed in nature with their respective,
individual means.

Copyright 2002, Sanjay K. Bose 14




Perfor mance M easur es

K

[¢)
Total Throughput =1 =Q L (5.5)
j=1
|
Averagetraffic load at nodej (i.e. Q)= I =FJ (5.6)
j
|
Visit Count to nodej = V; :l—J (5.7)

These may also be obtained by directly solving the following
K linear equations -
L, & -
v, :I_ + qlvi P; j=1,...... K (5.8
“T 1 Scaled Flow Balance Equations

Copyright 2002, Sanjay K. Bose 15

Interpretation of the Visit Ratio V; : Average number of times a job
will visit Q; every time it actually enters the (open) queueing
network.

¥

Average number of jobsat nodej = N; = a ko; (k) (5.9)
k=0
&

Average number of jobsinsyssem= N=g N; (5.10)

=1

Mean Sojourn Time (W): The mean total time spent in the system
by ajob beforeit leaves the network.

(5.12)

Qox

W:E: m
| |

j=1
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When does the Product-Form Solution hold?

The product-form expression for the joint state
probabilities hold for any open or closed
gueueing network where local balance conditions
are satisfied.

See Robertazzi’s book for an interesting
explanation for the conditions under which the
product-form expression in valid.
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Specifically, open or closed networks with the following types of
gueues will have a product-form solution -

1. FCFS queue with exponentia servicetimes
2. LCFS queues with Coxian service times
3. Processor Sharing (PS) queues with Coxian service times

4. Infinite Server (1S) queues with Coxian service times

A Coxian service time has a distribution of the following type -

Ls(s) +q byb,...b O )
s)=g, +q b,b,..... i
B gl 2 1v2 |g|lj=ls+ j

with b, =1-g;, for 1£if£L and 9. =1
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Example: Open Jackson Network

_ | _1@-p)
I, =— |, =1
| | | I=14p Py Py
=Ii1p1
_’EAP_1> M?l\j:-/l 1 pl_’ o= | r :l (1- pl)
- 2
P2 Y mp mp,
I, pitp=1
=110, Mean Number
Q2 . i
2, 47 in the Queues
Service Rate of Q1=m N, = M N,=_'2
Service Rate of Q2= C A, 2 1,
P(n,ny)=r"@- rr 2(@-ry)
. . N M Mz
Mean Sojourn Time  W=—= +
I 1@-ry) 1@-ry)

See Section 5.3 for more examples
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Extensionsto Jackson’s Theorem for Open Networks

[A] Jackson's Theorem with State dependent Service Rates at the
Queuing Nodes
For this, assume that the service times at Q, are exponentially distributed

with mean 1/m(m) when there are m customersin Q, just before the
departure of a customer.

[B] Queuing Networkswith Multiple Customer Classes

For this, we need to assume that the service time distribution at a node
will be the same for all classes even though they may differ from one node
to another. The service times may be state dependent.

The external arrival rates and routing probabilities will vary from one
class of customers to another

See Section 5.4 for detailed formulation
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Closaed Queueing Networks

* K queues- Q, ...... , Q¢ inthe queueing network
* M jobs of the same class circulating in the network

* p; bethe routing probability from Q, to Q, (probabilistic
routing)

Since network is a closed network

Qo=
>
I
=
I
=
X

1

i

* No arrivas from outside and no departures from the network

* Flow balance conditions for this network may still be written as
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» The K equations of (5.12) are not independent. Hence, they cannot
be solved to uniquely find thel ;sfor the K queues, j=1,.....,K

* Using any of the K-1 equationsin (5.12), we can find the | s up to
amultiplicative constant

For this, assume that a(M) is an (unknown) scalar quantity
and let {I '} j=1,...,K be a particular solution of (5.12)
such that the true average arrival rates {I (M)} j=1,....K

are given by
M)y =aM)I"  j=1,.....K (5.13)
«a(M) and {I ;(M)} j=1,........,K are both functions of the

population size of M jobs circulating in the closed network

*However, {I '} j=1,......K will beindependent of M
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An aternate, but equivaent approach would be to do the
following -

* Choose any queue in the network (say Q,) as the reference
queue and assumethat | ;*=a
Any value of a may be chosen!
A convenient choiceisa=m sothatr =1 ;"/m=1

» Solve the flow balance equations of (5.13) to obtain the
relative throughputs (I ,*,1 5°,....... J ) intermsof a.
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» Assuming the service times to be exponentialy distributed
(recdll that we are assuming M/M/m type queues), we alow the
actual servicerates at each queue to be state dependent

m(m) = servicerate a Q, when Q, isin state m
(exponential service times assumed)

» Using the relative throughputs {I '} j=1,......,K found earlier,
we definetherelative utilizations{u} j=1,......K as-

*

|
— -
uj(n‘)—— =4....K m=1.....M (5.14)

m(m
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Let n, = Number in queue Q,
State Probability Vector 1= (Ny,.ecenee. ,Ny)
suchthat N; +........... +n, =M Tota number of jobs
Jackson’s Theorem for Closed Networ ks of M/M/- Type Queues
- 1 L .
P(n) =P(n,,n,,....... N )=—C) P(n 5.17
@ =Pl ) =5 O BM) - (517)
where  P;(n;)=1 n; =0
=u;Qu;(2)......u; (n;) n;®1
6 = A A
and GM)= a R(n)PR(n,)........ P (ny)
n+..+ng =M
G(M) = Normalization Constant
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Example Choosel ;" =m
Then |, =|1*1'_qz 1-q
v g} a 1-p 1-p
6 M/M/1 1-
Y . oglam
1-p u, = 2 1-
—_— m,
2
P m un
P(n,,n,)=P(M - n,n) =—2
() =P(M - i) =

Closed Network with M jobs

1_ u2/|+1

M
Normalization Constant G(M ) = é uy =
-u

n=0 2
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Example

4 Tn} q
H—>wwn
A 1q
Ip
P m

Closed Network with M jobs

(O, isbusy} = 1P M) = 1- 2= CM - D
{Q, isbusy} = 1-P(0, M) = GM)  G(M)
1 _ GM-1)

P{Q, isbusy} = 1-P(M, 0) = 1- 0 =u, 0
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Visit Ratios

Thevisitratio V; of the it queue Q; in the queueing network is
defined as the mean number of times Q, is visited by a job for
every visit it makesto a given reference queue, say Q,.

Note that the definition is basically the same as for an open
network.

With Q, asthereferencequeue, Vv, =—_—  i=1,...,K

The same result will be obtained by setting V; =1 and solving
the equations V xP =V with V =(V,,....... V¢) and P=[p;]
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Jackson’s Theorem for Closed Networks of Multi-Server Queues

K  exponential service queues in the closed network with
probabilistic routing givenby {p;) i,j=1...... K

Q hass servers P m(m)=min(mm,sm) i=1,......, K

m = service rate of asingle server at Q,
m (m) =overal (state dependent) service rate at Q; when it
has atotal of mjobs (waiting and in-service)

. I
Define wu, :W wherel ;" isthe relative throughput for Q,
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Jackson’s Theorem for a Closed Network of Multi-Server Queues
Using these

. 1 éX u' U
P(R) =P(n,,....... ’nK):G(M)SOb(n)g
i=1 i i

such that n+n,+.....+ng=M
b, =n! n£s
=sis)™ " >
&K uv 0
and M= & O al

m+..+ng =M € i=1 | n)g
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These expressions may be written in a smpler form for a Closed
Network of Single Server Queues with Exponential Service

N - 1 éex U

P(n) =P(n,......N ) =——— i

Closed Network G(M) ain 1]

of Sngle Server

S;J;:rinv;';h such that n+.....+n =M

Service Times 5

e

) M= & §C£) a2

m+..+nK =M € i=1 a
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* The major computational difficulty with finding the state
probability distribution of a Closed Network is that of finding
the value of the normalization constant G(M)
This complexity increases rapidly with larger networks
(increasing values of K) and larger population of
circulating jobs (increasing values of M)

* G(M) may be calculated directly only for very small networks
with a very small number of circulating jobs. For larger
networks, the Convolution Algorithm should be used to
calculate G(M).

* |If mean performance parameters are desired (rather than the
actual state probability), then the Mean Value Algorithm may
be directly used to find these without finding G(M) at all.
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For a closed network of K single server queues with M jobs
circulating -
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Then

x 5 0
= & O
N+ 4 =M 8G(M) j= ]
n3n
n

ek ) }
A 2 SOu"* factoring out (u )"
! a joo- i
G(M) m+.+ne=M-n@d j=1 )

Normalization constant of the
queueing network with n
fewer customers, i.e. G(M-n)

=u

|
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n G(M - n)
P{n 3 =u.
Therefore {n, 3 n} =, 0
and P{n, =n} =P{n, 3 n} - P{n 3 (n+1)} Marginal
_y "M -n)  GM-n- DU ?kllztirtlhbuﬂelo?em
"Eemy T o) g d
Y Y
Note that anP{n=n=g Pn3n
n=1 n=1
M
and therefore  E{n}=g u" G(M - n) Mean number in Q,
n=t G(M)
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Note that the departure rate from Q, will aways be m whenever
Q, has one or more jobs.

Therefore, the actual throughput | ; of Q, will be given by

GM -1

Iy =mP{n; * 3 =mu, G(M)

The actual utilization r; of Q; will then be

r. =

I—‘ o r;=P{n 313

m

—u G(M -1
G(M)
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