Analysis
 of
 A Finite Capacity, Single Server Queue
 (M/G/1/K)

- We use the same notation as that used earlier for the M/G/1 queue in Section 3.2.
- The system state (i.e. the number in the system) at the imbedded points corresponding to the time instants just after a job completion will form a Markov Chain

$$
\begin{align*}
n_{i+1} & =\min \left\{a_{i+1}, K-1\right\} & & \text { for }
\end{aligned} \quad \begin{aligned}
& n_{i}=0 \tag{1}\\
& \\
&
\end{align*}=\min \left\{n_{i}-1+a_{i+1}, K-1\right\} \quad \begin{array}{ll}
\text { for } & n_{i}=1, \ldots \ldots,(K-1)
\end{array}
$$

$$
\begin{aligned}
& n_{i}=\text { Number left behind in the system by the } i^{\text {th }} \text { departure } \\
& \text { Imbedded Points } \Leftrightarrow \text { Departure Instants of Jobs after } \\
& \text { completing service } \\
& \text { The "max" function in (1) will lead to loss of jobs which are } \\
& \text { denied entry into the queue when the system is full }
\end{aligned}
$$

Considering the Markov Chain of states at the imbedded points (corresponding to the departure instants), we will have at equilibrium -

State Probability at equilibrium:

$$
p_{d, k}=\mathrm{P}\{\text { system in state } k\} \quad k=0,1, \ldots . .,(K-1)
$$

State Transition Probability at equilibrium

$$
p_{d, j k}=P\left\{n_{i+1}=k \mid n_{i}=j\right\} \quad 0 \leq j, k \leq(K-1)
$$

Note that the system state at the departure instant can only be between 0 and ($K-1$)
$\alpha_{k}=\mathrm{P}\{k$ arrivals occurring in a service time $\}$

$$
\begin{equation*}
\alpha_{k}=\int_{t=0}^{\infty} \frac{(\lambda t)^{k}}{k!} e^{-\lambda t} b(t) d t \tag{3}
\end{equation*}
$$

Note that α_{k} may also be found as the coefficient of z^{k} in the expansion of $L_{B}(\lambda-\lambda z)$

The state transition probabilities $p_{d, j k}$ for this Markov Chain (at the departure instants) may then be found in terms of α_{k} as given in the next slide

State Transition Probabilities for the Departure Instants

$$
\left.\begin{array}{l}
p_{d, 0 k}=\left\{\begin{array}{lr}
\alpha_{k} & 0 \leq k \leq K-2 \\
\sum_{m=K-1}^{\infty} \alpha_{m} & k=K-1
\end{array} \quad j=0\right.
\end{array}\right] \begin{aligned}
& p_{d, j k}=\left\{\begin{array}{lrl}
\alpha_{k-j+1} & j-1 \leq k \leq K-2 \\
\sum_{m=K-j}^{\infty} \alpha_{m} & k=K-1 & l \leq j \leq(K-1)
\end{array}\right.
\end{aligned}
$$

K Balance Equations

$$
\begin{equation*}
p_{d, k}=\sum_{j=0}^{K-1} p_{d, j} p_{d, j k} \quad k=0,1, \ldots \ldots . . K-1 \tag{5}
\end{equation*}
$$

Normalization Condition

$$
\begin{equation*}
\sum_{k=0}^{K-1} p_{d, k}=1 \tag{6}
\end{equation*}
$$

As usual, we can solve for the equilibrium departure state probabilities $\left\{p_{d, j}\right\} j=0,1, \ldots,(K-1)$ using any ($K-1$) equations from (5) along with the normalization condition of (6).

Alternatively, we can solve for $\left\{p_{d, j}\right\} j=0,1, \ldots .,(K-1)$ using the following -

$$
\left.\begin{array}{l}
p_{d, k}=p_{d, 0} \alpha_{k}+\sum_{j=1}^{k+1} p_{d, j} \alpha_{k-j+1} \quad k=0,1, \ldots \ldots \ldots, K-2 \tag{7}\\
\sum_{k=0}^{K-1} p_{d, k}=1
\end{array}\right\}
$$

See notes for another solution approach

> We now need to use $\left\{p_{d, k}\right\} k=0,1, \ldots, K-1$ to find the equilibrium state probabilities $\left\{p_{k}\right\} k=0,1, \ldots, K$ at an arbitrary time instant. We would also like to find the probability P_{B} that an arrival finds the system full and is blocked, i.e. leaves without service.

We summarize our equilibrium state probability definitions as the following
$\left\{p_{d, k}\right\} k=0, \ldots ., K-1 \quad$ State probabilities at departure instants
$\left\{p_{a, k}\right\} k=0, \ldots, K \quad$ State probabilities at arrival instants regardless of whether the job joins the queue or is blocked
$\left\{p_{a c, k}\right\} k=0, \ldots ., K-1 \quad$ State probabilities at an arrival instant when the job actually does join the queue

Note that the "departure instant" implies the instant just after a departure and the "arrival instant" implies the instant just before the actual arrival.

PASTA	$\square p_{k}=p_{a, k}$	$k=0,1, \ldots \ldots ., K$		
Kleinrock's Result	,$p_{d, k}=p_{a c, k}$			$k=0,1, \ldots \ldots . . K-1$

Therefore

$P_{B}=p_{a, K}=1-\sum_{k=0}^{K-1} p_{a, k}$

Average arrival rate of jobs actually entering the system $=\lambda_{c}$

$$
\lambda_{c}=\lambda\left(1-P_{B}\right)
$$

Offered Traffic to the queue $=\rho=\lambda \bar{X}$

Actual Throughput of the Queue $=\rho_{c}=\rho\left(1-P_{B}\right)$

$$
p_{0}=1-\rho_{c}=1-\rho\left(1-P_{B}\right)
$$

probability of finding the system empty

But from (12), for $k=0$, we have $\quad p_{0}=\left(1-P_{B}\right) p_{d, 0}$

Therefore
$1-\rho\left(1-P_{B}\right)=\left(1-P_{B}\right) p_{d, 0} \quad \Longleftrightarrow \quad P_{B}=1-\frac{1}{p_{d, 0}+\rho}$
and

$$
\begin{equation*}
p_{k}=\frac{1}{p_{d, 0}+\rho} p_{d, k} \quad k=0,1, \ldots \ldots . K-1 \tag{15}
\end{equation*}
$$

Note that (15) implies that at equilibrium, for a given value of k in the range $k=0, \ldots,(K-1)$, the state probabilities at an arbitrary instant p_{k} and the state probabilities at the departure instant $p_{d, k}$ are strictly proportional.

Summarizing

- Find the state probabilities $\left\{p_{d, k}\right\} k=0, \ldots,(K-1)$ at the departure instants using either (5) \& (6) or (7)
- Find the blocking probability P_{B} using (14). This will also be the same as the probability p_{K} of observing the system to be in state K at an arbitrary time instant
- Find the state probabilities $\left\{p_{k}\right\} k=0, \ldots,(K-1)$ at an arbitrary instant using (15). Note that $p_{K}=P_{B}$

Performance Results

$$
\begin{aligned}
& N=\sum_{k=0}^{K} k p_{k}=\frac{1}{\left(p_{d, 0}+\rho\right)} \sum_{k=0}^{K-1} k p_{d, k}+K\left(1-\frac{1}{\left(p_{d, 0}+\rho\right)}\right) \\
& \lambda_{c}=\lambda\left(1-P_{B}\right)=\frac{\lambda}{\left(p_{d, 0}+\rho\right)} \\
& W_{q}=W-\bar{X}=\frac{1}{\lambda} \sum_{k=0}^{K-1} k p_{d, k}+\frac{K}{\lambda}\left(p_{d, 0}+\rho-1\right)-\bar{X}
\end{aligned}
$$

An Alternate Analytical Approach for the M/G/1/K Queue

Consider the mean of the time interval between successive imbedded points (i.e. departure instants).

$\frac{1}{\lambda}+\bar{X}$	queue empty at the previous departure instant	probability $=p_{d, 0}$
\bar{X}	queue non-empty at the previous departure instant	probability $=1-p_{d, 0}$

Therefore

To find p_{k}, for $k=1, \ldots .,(K-1)$, consider when an arbitrarily chosen time instant falls within a service duration where x is the amount of service already provided.
$p_{k}=\rho_{c}\left[p_{d, 0} \int_{0}^{\infty} \frac{(\lambda x)^{k-1}}{(k-1)!} e^{-\lambda x} \frac{1-B(x)}{\bar{X}} d x\right]$

$$
\begin{equation*}
+\rho_{c}\left[\sum_{j=1}^{k} p_{d, j} \int_{0}^{\infty} \frac{(\lambda x)^{k-j}}{(k-j)!} e^{-\lambda x} \frac{1-B(x)}{\bar{X}} d x\right] \tag{28}
\end{equation*}
$$

$\rho_{c} \quad$ P\{chosen time instant will
$\rho_{c} \quad$ fall within a service time\}
when previous
$\frac{1-B(x)}{\bar{X}}$ pdf of elapsed service time
system non-empty

As before, let $\quad A_{k}=\sum_{j=k} \alpha_{j}=\sum_{j=k}^{\infty} \int_{0}^{\infty} \frac{(\lambda x)^{j}}{j!} e^{-\lambda x} b(x) d x \quad k=1,2, \ldots \ldots, \infty$

$$
\begin{equation*}
=\int_{0}^{\infty} \frac{(\lambda x)^{k-1}}{(k-1)!} e^{-\lambda x}[1-B(x)] \lambda d x \tag{29}
\end{equation*}
$$

$$
\begin{equation*}
\text { where } \quad \sum_{k=1}^{\infty} A_{k}=\lambda \bar{X}=\rho \tag{30}
\end{equation*}
$$

Using the expression for A_{k}, we can obtain

$$
\begin{equation*}
p_{k}=\frac{\rho_{c}}{\rho}\left[p_{d, 0} A_{k}+\sum_{j=1}^{k} p_{d, j} A_{k-j+1}\right] \quad k=1,2, \ldots \ldots, \infty \tag{31}
\end{equation*}
$$

To simplify the expression for p_{k} further, we use the result

$$
p_{d, k}=p_{d, 0} A_{k}+\sum_{j=1}^{k} p_{d, j} A_{k-j+1} \quad \triangleleft \quad \begin{gathered}
\text { Prove using } \\
\text { recursion }
\end{gathered}
$$

Substituting this, we get the same result as obtained earlier in (12) and (15) -

$$
p_{k}=\frac{\rho_{c}}{\rho} p_{d, k}=\left(1-P_{B}\right) p_{d, k} \quad k=0,1, \ldots,(K-1)
$$

Note that we still need to find p_{K}, the probability of finding the system full at an arbitrary instant to complete the analysis.
This is done in the following slides.

For $k=K$, we need to take into account the fact that arrivals coming when the system is full are blocked and denied entry into the system.

$$
\begin{align*}
& \begin{aligned}
p_{K}= & \rho_{c}\left[p_{d, 0} \sum_{k=K-1}^{\infty} \int_{0}^{\infty} \frac{(\lambda x)^{k}}{k!} e^{-\lambda x} \frac{1-B(x)}{\bar{X}} d x\right] \\
& +\rho_{c} \sum_{j=1}^{K-1} p_{d, j} \sum_{k=K-j}^{\infty} \int_{0}^{\infty} \frac{(\lambda x)^{k}}{k!} e^{-\lambda x} \frac{1-B(x)}{\bar{X}} d x \\
& \left.\begin{array}{l}
\text { Using (29), } \\
\text { this gives }
\end{array}\right\} p_{K}=\frac{\rho_{c}}{\rho}\left[p_{d, 0} \sum_{k=K}^{\infty} A_{k}+\sum_{j=1}^{K-1} p_{d, j} \sum_{k=K-j+1}^{\infty} A_{k}\right]
\end{aligned} \tag{33}
\end{align*}
$$

shown by summing $p_{d, k}$ over
$k=1, \ldots, K-1$ and using (30)

Applying (35) to (34), and using $p_{K}=P_{B}$ and $\rho_{c}=\rho\left(1-P_{B}\right)$ we get our earlier result

$$
p_{K}=P_{B}=1-\frac{1}{p_{d, 0}+\rho}
$$

