Analysis of M/M/n/K Queue
 with

Multiple Priorities

- For a P-priority system, class P of highest priority
- Independent, Poisson arrival processes for each class with
λ_{i} as average arrival rate for class i
- Service times for each class are independent of each other and of the arrival processes and are exponentially distributed with mean l / μ_{i} for class i
- Both Non-preemptive and Preemptive Priority Service disciplines are considered

Since the service times are exponentially distributed (i.e. memory less), the results for preemptive resume and preemptive non-resume will be identical

Solution Approach

- Define System State appropriately
- Draw the corresponding State Transition Diagram with the appropriate flows between the states
- Write and solve the balance equations to obtain the system state probabilities

Note that we have given here the solution approach that may be taken to solve a queueing problem of this kind. This has been illustrated with simple examples. More complex cases may be similarly formulated and solved with a corresponding increase in the solution complexity

M/M/-/- Queue with Preemptive Priority

For a P-priority queue of this type, define the system state as the following P-tuple

$$
\left(n_{1}, n_{2}, \ldots \ldots, n_{P}\right)
$$

where
$n_{i}=$ Number of jobs of priority class i in the queue
$i=1, \ldots \ldots, P$

Note that the server will always be engaged by a job of the highest priority class present in the system, i.e. by a job of class j with service rate μ_{j} if $n_{j} \geq l$ and $n_{j+1}=\ldots . .=n_{P}=0$.

We illustrate the approach first for a 2-priority $\mathrm{M} / \mathrm{M} / 1 / \infty$ queue

\qquad

The corresponding balance equations for the 2 -priority $\mathrm{M} / \mathrm{M} / 1 / \infty$ queue will be given by

$$
\begin{align*}
& p_{0}\left(\lambda_{1}+\lambda_{2}\right)=p_{0,1} \mu_{2}+p_{1,0} \mu_{1} \\
& p_{0,1}\left(\lambda_{1}+\lambda_{2}+\mu_{2}\right)=p_{0,2} \mu_{2}+p_{0} \lambda_{2} \\
& p_{1,0}\left(\lambda_{1}+\lambda_{2}+\mu_{1}\right)=p_{2,0} \mu_{1}+p_{1,1} \mu_{2}+p_{0} \lambda_{1} \\
& p_{1,1}\left(\lambda_{1}+\lambda_{2}+\mu_{2}\right)=p_{1,0} \lambda_{2}+p_{1,2} \mu_{2}+p_{0,1} \lambda_{1} \\
& \ldots \ldots \ldots . \\
& \ldots \ldots \ldots . \\
& \ldots \ldots \ldots .
\end{align*}
$$

These may be solved to obtain the desired state probabilities
We illustrate next how this approach may be generalized to apply to queues with finite capacity and/or multiple servers

2-Priority M/M/1/3 Queue (Preemptive Priority)

(An example of a queue with finite capacity)

> New arrivals will be lost if they come when the system is in any of the circled states

State Transition Diagram for the 2-Priority M/M/1/3 Queue with Preemptive Priority

- We can solve for the state probability distribution by solving any nine of the ten balance equation along with the equation for the normalization condition
- Job loss probability (or the blocking probability)

$$
=p_{1,2}+p_{2,1}+p_{3,0}+p_{0,3}
$$

- Other desired probabilities may also be found from these state probabilities. Some examples are -
$\mathrm{P}\{$ server busy serving low priority job $\}=p_{1,0}+p_{2,0}+p_{3,0}$
$\mathrm{P}\{$ one high priority job in the system $\}=p_{0,1}+p_{1,1}+p_{2,1}$

2-Priority M/M/2/3 Queue (Preemptive Priority)

(An example of a queue with finite capacity and multiple servers)

Solve in the usual manner for the system state probabilities

M/M/-/- Queue with Non-preemptive Priority

We can propose two different methods of representing the system state for a M/M/c/K queue of this type with P priority classes.

Approach I: If $P<c$, then this approach gives a more compact representation using a $2 P$-tuple than the more general Approach II given next.

State Representation ($n_{l}, \ldots \ldots \ldots, n_{P}, s_{l}, \ldots \ldots, s_{P}$)
where
$n_{j}=$ number of jobs of class j in system $j=1, \ldots, P$
$s_{k}=$ number of servers currently busy serving jobs of priority class $k \quad k=1, \ldots \ldots, P$

Approach II : This requires a $(P+c)$-tuple of the following form

State Representation \qquad
where
$n_{j}=$ number of jobs of class j in system $j=1, \ldots, P$
$s_{k}=$ priority class of the service currently on-going at server $k \quad k=1, \ldots \ldots, c$

Note that $n_{l}+\ldots \ldots+n_{P} \leq K$ for a finite capacity system

We have used the representation of Approach II in the example described subsequently

2-Priority M/M/1/3 Queue (Non-preemptive Priority)

(An example of a single server queue with finite capacity)

State Transition Diagram

The balance equations for this queue are

$$
\begin{aligned}
& p_{0}\left(\lambda_{1}+\lambda_{2}\right)=p_{0,1,2} \mu_{2}+p_{1,0,1} \mu_{1} \\
& p_{0,1,2}\left(\lambda_{1}+\lambda_{2}+\mu_{2}\right)=p_{0} \lambda_{2}+p_{0,2,2} \mu_{2} \\
& p_{1,0,1}\left(\lambda_{1}+\lambda_{2}+\mu_{1}\right)=p_{0} \lambda_{1}+p_{2,0,1} \mu_{1}+p_{1,1,2} \mu_{2} \\
& p_{1,1,1}\left(\lambda_{1}+\lambda_{2}+\mu_{1}\right)=p_{1,0,1} \lambda_{2} \\
& p_{1,1,2}\left(\lambda_{1}+\lambda_{2}+\mu_{2}\right)=p_{0,1,2} \lambda_{1}+p_{1,2,2} \mu_{2}+p_{2,1,1} \mu_{1} \\
& p_{0,2,2}\left(\lambda_{1}+\lambda_{2}+\mu_{2}\right)=p_{0,1,2} \lambda_{2}+p_{1,2,1} \mu_{1}+p_{0,3,2} \mu_{2} \\
& p_{2,0,1}\left(\lambda_{1}+\lambda_{2}+\mu_{1}\right)=p_{1,0,1} \lambda_{1}+p_{2,1,2} \mu_{2}+p_{3,0,1} \mu_{1}
\end{aligned}
$$

....and

$$
\begin{aligned}
& p_{1,2,2} \mu_{2}=p_{1,1,2} \lambda_{2}+p_{0,2,2} \lambda_{1} \\
& p_{2,1,2} \mu_{2}=p_{1,1,2} \lambda_{1} \\
& p_{2,1,1} \mu_{1}=p_{1,1,1} \lambda_{1}+p_{2,0,1} \lambda_{2} \\
& p_{1,2,1} \mu_{1}=p_{1,1,1} \lambda_{2} \\
& p_{0,3,2} \mu_{2}=p_{0,2,2} \lambda_{2} \\
& p_{3,0,1} \mu_{1}=p_{2,0,1} \lambda_{1}
\end{aligned}
$$

with the following normalization condition

$$
\begin{aligned}
& p_{0}+p_{1,0,1}+p_{0,1,2}+p_{0,2,2}+p_{0,3,2}+p_{2,0,1}+p_{3,0,1} \\
& \quad+p_{1,1,1}+p_{1,1,2}+p_{1,2,1}+p_{2,1,1}+p_{1,2,2}+p_{2,1,1}=1
\end{aligned}
$$

- These equations may be solved on the usual way to obtain the individual state probabilities as per the definition of the system state
- These state probabilities may then be used to compute other performance parameters and probabilities that may be of interest.
- For example, the blocking probability of this system will be given by $\left(p_{0,3,2}+p_{3,0,1}+p_{1,2,2}+p_{2,1,2}+p_{1,2,1}+p_{2, l, 1}\right)$
- Other, similar probabilities and performance measures may also be calculated

Approach may be extended in the usual fashion to analyze other similar systems as follows -

- More than two priority classes
- Other buffer capacity values or even queues with infinite buffer capacities
- Different capacity limits for the different priority classes
- Queues with more than one server

