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Review of Probability Theory

Conditional Probability P{B|A} = P{event B occurs given that A has already occurred}

If B⊥A (i.e. event B is independent of A), then P{B|A}=P{B} Since occurrence of A will
not affect the chances of occurrence of B, given that B is independent of A.

Baye’s Rule Denoting P{AB} = P(events A and B both occur}, we get that -

P{AB} = P{A}P{B|A} = P{B}P{A|B}

This leads to Baye’s Rule  
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This relationship is extremely useful in probability calculations such as in
changing conditioning of events. (Example: Changing from a priori to a
posteriori probabilities)

Mutually Exclusive Events Note that if A and B are Mutually Exclusive events then P{AB}=0 as in that
case, probabilistically, events A and B do not occur together

 We define P{AÇB} as the probability of the union of events A and B. This is the event when either A
occurs or B occurs or both occur
By definition,      P{AÇB} = P{A} + P{B} – P{AB}

= P{A} + P{B} if A and B are mutually exclusive events
= P{A} + P{B} – P{A}P{B} if A⊥B, i.e. are independent events

Complementary Event For an event A, the complementary event AC refers to the event where A
does not occur

P{AC} = 1 – P{A}

Note also that, for any event B,   P{B} = P{B|A}P{A} + P{B|AC}P{AC}

Discrete Random Variables A discrete random variable X takes on discrete values xi with probabilities
P{X=xi}>0 for i=1, 2, 3, ........ and P{X∈(x1, x2, .......)}=1

Examples of Distributions for Discrete Random Variables -
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2. Poisson Distribution  
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Continuous Random Variables In this case, the random variable X is not limited to discrete values but
can take on any value x in a range [x1, x2], i.e. x∈[x1, x2], where the
probability of the random variable X lying between x and x+dx is given
by P{x ≤ X ≤ x+dx} = fX(x)dx  where fX(x) is referred to as the
Probability Density Function (pdf) of the random variable X

The Cumulative Distribution Function FX(x) may also be used to
describe the probability distribution of a continuous random variable.

This is defined as ∫
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Examples of Distributions of Continuous Random Variables -

1. Normal Distribution -   
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2. Uniform Distribution - 
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3. Exponential -       x
X exf µµ −=)( for ∞≤≤ x0

     0)( =xf X otherwise

Memoryless Property Let the random variable x≥0 be the length of service provided to a customer
when service starts from the time instant t=0. Consider a customer who is still in
service at time t and let {(X-t) | X>t} be the remaining service time for that
customer. [Not that this random variable is the remaining service time when the
customer is examined at time t, given (of course) that the customer is still in
service at time t - i.e. the customer's service time X is greater than t]

Note that we can write P{(X-t)>x, X>t} = P{(X-t)>x | X>t}P{X>t}
and that trivially P{(X-t)>x, X>t} = P{(X-t)>x} since x and t are both positive

Therefore
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If the service distribution is memoryless, then that implies that when we examine the customer (who
started service at t=0 and is still in service) at time t, the service given in the past during the interval (0,t) is
forgotten! If this is indeed the case, then it follows that P{(X-t)>x | X>t} = P{X>x}= 1- FX(x)

Using this, we get that for a memory less distribution, )](1)][(1[)](1[ tFxFxtF XXX −−=+−

The Exponential Distribution  is an example of a memory less distribution.  Note that for this distribution,
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Therefore, )](1)][(1[)](1[ )( tFxFeeextF XX
txxt

X −−===+− −−+− µµµ  as required by the
Memoryless Property

For integer valued random variable X={0, 1, 2, .......∝}, the corresponding memory less distribution is the
Geometric Distribution where P{X=n} = qn(1-q) leading to P{X≥x} = qx  for x=0, 1, 2, ......, ∝

This may be verified by noting that P{X≥x+N} = qx+N = qxqN = P{X≥x}P{X≥N} as required.

Note that the memory less property of the exponential and geometric distributions make them easy to
handle. These are therefore very useful in the analytical modeling of queuing systems and computer
communications.

Joint Distributions The joint distribution for continuous random variables X and Y is given in the
following form -

cumulative distribution function (cdf)  },{),( yYxXPyxFXY ≤≤=
probability density function (pdf)
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Note that FX(x) = FXY(x, ∝) FY(y) = FXY(∝, y) 
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Note also that if X⊥Y, then fXY(x,y)=fX(x)fY(y) and FXY(x,y)=FX(x)FY(y)

Functions of Random Variables For a random variable X, U=u(X) may be defined as another random
variable which is a function of the random variable X.

If u(x) is differentiable and monotone, then the pdf of the random
variable U may be easily found as fU(u)=fX(x)/|u'(x)| or
fU(u)|du|=fX(x)|dx|

If u(x) is not monotone then one has to be more careful as the function
X=u-1(U) may have multiple roots and these should be accounted for
while finding fU(u). If u(x) is not differentiable at some point in the
range, then delta functions will arise in the pdf of U.

Example: Consider u(x) = x2 to generate the random varaible U from the random
variable X, where X∈[-1, 1]
From the form of the function u(x) and the range of X, we can see that -

fU(u)du = fX(x)dx + fX(-x)|dx|

Since du=2xdx, we get that, dx=du/(2√u)

Therefore, 
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If we consider the case where the random variable X is uniformly distributed in
[-1, 1], then

fX(x)=0.5 for -1≤x≤1
= 0 otherwise

This will then give 
u
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This approach may be extended using the Jacobian for the case of functions of more than one variables.

As an example of this, consider z=g(x,y) and w=h(x,y) [Note that if only one function is given
then the second function may be
arbitrarily defined.]

Let  g(xi, yi) = z and h(xi, yi)=w i.e. (xi, yi) are the real solutions to these equations for given (z,w)

The Jacobian J(x,y) is then defined as 
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where {xi, yi} i=1, 2,....., n,..... are the roots of z=g(x,y) and w=h(x,y)

Note that if there are no real solutions for some values of (z,w), then for these fZW(z,w)=0
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Using Expectations and Transforms

Expectations If X is a random variable, then we can define expectations for various functions of X as -
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Some useful results:

E{cg(X)} = cE{g(X)}
E{g(X)+h(Y)} = E{g(X)} + E{h(Y)}
For X⊥Y, E{g(X)h(Y)} = E{g(X)}E{h(Y)}

The nth moment of the random variable X is defined as nn XXE =}{

Specifically - 
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Xσ  is referred to as the standard deviation of X

Note that Xσ is really indicative of the dispersion  of the random
variable X around its mean

Laplace Transform This is a convenient tool to use for continuous random variables X such that X≥0 and
is defined as
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Some useful properties of this transform are -

(a) Moment Generating Property 0|)(
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(b) Given a transform, inverting it will provide the corresponding pdf  fX(x) of X

(c)  Multiplication  in the Transform Domain would correspond to Convolution in the
r.v. domain and vice-versa.
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(d) Transform of the sum of independent random variables = Product of the
individual transforms
If random variables X and Y are such that X⊥Y, then we can show that -
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Characteristic Function (Fourier Transform) This type of transform is useful for continuous random
variables where X may take on negative values,
i.e. -∝ ≤ X ≤ ∝

This is defined as }{)( Xj
X eE ϖϖφ = = F [fX(x)]     i.e. the Fourier Transform of fX(x)

Properties similar to those described for Laplace Transforms above are also applicable here -

(a) 0|)()( =−= ϖϖφ
ϖ Xn
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(b) Multiplication in Transform Domain corresponds to Convolution in the random variable
domain and vice versa
(c) The characteristic function of the sum of independent random variables is the product of
the characteristic functions of the individual random variables

Generating Function or Probability Generating Function (Z-Transform of the Probability Distribution)

This transform is used for a discrete random variable X, such that X≥0. It is defined as -
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This also has properties similar to the transforms given earlier

(a) Moment Generating Property )1(XGX ′= )1()1( XGXX ′′=−  ....... etc.

(b) If X1⊥X2 and Y=X1+X2, 
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Covariance & Correlation Consider the random variables X and Y.
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Note that the Covariance of X and Y, Cov(X, Y) is defined as  -

YXXYYYXXEYXCov .)})({(),( −=−−=

(a) If X⊥Y, then Cov(X, Y) = 0 since YXXY .=
(b) If Cov(X, Y) = 0, then the random variables X and Y are uncorrelated

Note that X⊥Y, implies Cov(X, Y) = 0. However, Cov(X, Y) = 0 does not imply X⊥Y but the
much weaker condition that X and Y are uncorrelated
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Stochastic (Random) Processes

Definition of a Stochastic Process: {X(t); t∈T} is a stochastic process if X(t) is a random variable for each
t in the index set T - usually t indicates time.

Different ways of classifying Stochastic Processes:

“Continuous Time Processes” when T is an interval and all times in that interval are possible choices
for t.

“Discrete Time Processes” when T is a set of discrete time points with Xn = X(tn ) constituting the
process.

“Continuous State Process” when X(t) can have a continuum of values possibly within a fixed range.

“Discrete State Process” when X(t) can only have one of a discrete set of values.

Note that X(t)=x implies that the random process is in state x at time t. The Stochastic Process X(t) is said
to be well defined if the joint distribution of the random variables X(t1),  X(t2), ........., X(tk) can be
determined for every finite set of time instants t1, t2, ........, tk

In a stochastic sense, the random process is completely specified if the joint distribution )~,~(~ txF
X
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If )~,~(~ txF
X

 is known as above, then all possible stochastic dependencies between sample values of X(t)

may be found. This, however, is usually hard to get. Typically, only some limited dependencies will be
known and different Stochastic Processes are classified based on these known dependencies. Examples of
this leading to special processes are given next.

(a) Independent Process: For this type of process, {X(tn)} or {Xn} are independent random variables,
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Note that this is really a trivial case of a process as there are no dependencies
between the various Xis.

(b) Stationary Processes: These are processes where the joint distribution of the random variables
corresponding to a set of time points is invariant to a time shift of all the time
points. The process is considered Strictly Stationary if the property holds for any
choice of the number of time points. If the property holds for any choice of n
time points or less but not for any choice of n+1 time points then the process is
referred to as being Stationary of Order n. The process is referred to as being
Wide Sense Stationary (WSS) if (a) E{X(t)} is independent of t and (b)
E{X(t)X(t+τ)} depends only on τ and not on t.

Stationary Processes will not be used in our description of queues and will not
be considered further here.

(c) Markov Processes: Markov Processes are ones for which the Markov Property (given below) holds.
This property states that -
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Note that when this property is satisfied, the state of the process/system at time instant tn+1 depends only on
the state of the process/system at the previous instant tn and not on any of the earlier time instants.

Alternatively, one can say that a process is termed a Markov Process if, given the present state of the
process, its future evolution depends is independent of the past of the process.  This effectively implies a
one-set dependence feature for the Markov Process where older values are forgotten. Restricted versions of
this property leads to special cases, such as -

(a) Markov Chains over a Discrete State Space
(b) Discrete-Time and Continuous- Time Markov Processes and Markov Chains

Markov Chains: The discrete random variables {Xn} form a Markov Chain if the probability that the next
state is xn+1 depends only on the current state xn and not on any previous values.

For the Discrete Time case, state changes are pre-ordained to occur only at the integer
points 0, 1, 2, ......, n (that is at the time points t0, t1, t2,......, tn). For the Continuous Time
case, state changes may occur anywhere in time.

Homogenous Markov Chain: A Homogenous Markov Chain is one where the transition probabilities
P{Xn+1=j | Xn=i} is the same for all n. Note that one can then write that -

Transition Probability from state i to state j = pij = P{Xn+1=j | Xn=i} "n

It should be noted that for a homogenous Markov chain, the transition probability depends
only on the terminal states (i.e. the initial state i and the final state j) but does not depend on
when actually the transition (i → j ) occurs.

(d) Semi-Markov Processes: In a Semi-Markov Process, the distribution of time spent in a state can have
an arbitrary distribution but the one-step memory feature of the Markovian
property is retained. We will find processes of this type useful in some of
our analyses.

(e) Birth-Death Process: A Birth-Death Process is a special type of discrete-time or continuous-time
Markov Chain with the restriction that at each step, the state transitions, if
any, can occur only between neighboring states.

(g) Renewal Processes: These are related to random walks except that our interest here lies in counting
the number of transitions that take place as a function of time.

State at time t = Number of transitions in (0, t)
where (ti - ti-1) ∀ i are i.i.d. random variables

Let Xi = (ti - ti-1) ∀ i be a set of i.i.d. random variables. Subject to the
conditions that they are independent and have identical distributions, the random
variables {Xi} can have any distribution. Note that this corresponds to a Semi-
Markov Process.


