Lecture Set 2, EE 679, Copyright 2000, Sanjay K. Bose 1

Review of Probability Theory

Conditional Probability P{BJA} = P{event B occurs given that A has already occurred}

If BMA (i.e. event B isindependent of A), then P{B|A}=P{B} Since occurrence of A will
not affect the chances of occurrence of B, given that B is independent of A.

Baye' sRule Denoting  P{AB} = P(events A and B both occur}, we get that -

P{AB} = P{A}P{B|A} = P{B}P{A|B}

A{B}P{A[B}
P A
This relationship is extremely useful in probability calculations such as in

changing conditioning of events. (Example: Changing from a priori to a
posteriori probabilities)

This leads to Baye's Rule P{B| A =

Mutually Exclusive Events Note that if A and B are Mutually Exclusive events then P{AB} =0 as in that
case, probabilistically, events A and B do not occur together

We define P{ACB} as the probability of the union of events A and B. Thisis the event when either A
occurs or B occurs or both occur

By definition, P{ACB} =P{A} + P{B} — P{AB}
=P{A} + P{B} if A and B are mutually exclusive events
=P{A} + P{B} —P{A}P{B} if A*B,i.e. areindependent events

Complementary Event For an event A, the complementary event A° refers to the event where A
does not occur
P{A} = 1-P{A}

Note also that, for any event B,  P{B} = P{B|A}P{A} + P{BJAS} P{A"}

Discrete Random Variables A discrete random variable X takes on discrete values x; with probabilities
P{X=x;}>0fori=1,2,3, ....... and P{X1 (X, X2, .......)} =1

Examples of Distributions for Discrete Random Variables -
o o,
1. Binomial Distribution P{ X = x} =g =p"(1- p) x=0,1, .., Nn
Xg

X

o
2. Poisson Distribution P{X =x} = ¢ — for x=0, 1, 2, .....u
X
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Continuous Random Variables In this case, the random variable X is not limited to discrete values but
can take on any value x in arange [xy, Xo], i.e. XI [X1, X2], where the
probability of the random variable X lying between x and x+dx is given
by P{x £ X £ x+dx} = fx(X)dx where fx(x) is referred to as the
Probability Density Function (pdf) of the random variable X

The Cumulative Distribution Function Fy(X) may aso be used to
describe the probability distribution of a continuous random variable.
X

Thisisdefined as F, (X) = P{X £ 3} = of x (X)dx
-¥
dFy (%)

Noteasothat f, (X) =
X dx
Examples of Distributions of Continuous Random Variables -

C(x-m)?

e =" for-¥ £XEY

1. Normal Distribution-  f, (X) =

‘H%‘H

2. Uniform Distribution - f, (X) = 5 foraE XED
-a
f (x)=0 otherwise
3. Exponential - f o (x)=nme™ for O£ X£ ¥
f (x)=0 otherwise

Memoryless Property Let the random variable x3 0 be the length of service provided to a customer
when service starts from the time instant t=0. Consider a customer who is still in
service at time t and let {(X-t) | X>t} be the remaining service time for that
customer. [Not that this random variable is the remaining service time when the
customer is examined at time t, given (of course) that the customer is till in
service at timet - i.e. the customer's service time X is greater than t]

Notethat wecanwrite  P{(X-t)>x, X>t} = P{(X-t)>x | X>t} P{X>t}

and that trivially P{ (X-t)>x, X>t} = P{(X-t)>x} since x and t are both positive
Therefore

P{(X-t)>x P{(X>x+t} _1- F (t+X)

A0 XDXC =00y T rxs 1 R

If the service distribution is memoryless, then that implies that when we examine the customer (who
started service at t=0 and is still in service) at timet, the service given in the past during the interval (O,t) is
forgotten! If thisisindeed the case, thenit followsthat — P{(X-t)>x | X>t} = P{X>x}= 1- Fx(X)

Using this, we get that for amemory lessdistribution,  |[1- F, (t +X)] =[1- F, (X)][1- F, ()]

The Exponential Distribution is an example of a memory less distribution. Note that for this distribution,
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f o (X)=nme"™ and F, (x) =1- € ™ forx20

Therefore, [1- F (t+x)] =™ =g ™e ™ =[1- F, (X)][1- F, ()] as required by the
Memoryless Property

For integer valued random variable X={0, 1, 2, ....... 1}, the corresponding memory less distribution is the
Geometric Distribution where P{X=n} = q"(1-g) leading to P{X3x} = q* for x=0, 1, 2, ...... v

Thismay be verified by notingthat ~ P{X3x+N} = g™ = q*q" = P{X3 x} P{X3 N} as required.

Note that the memory less property of the exponential and geometric distributions make them easy to
handle. These are therefore very useful in the analytical modeling of queuing systems and computer
communications.

Joint Distributions The joint distribution for continuous random variables X and Y is given in the
following form -

cumulative distribution function (cdf)  F,, (X, y) = P{X £ X,Y £ y}
probability density function (pdf)
2

fXY(x,y):ﬂ—FXY(x,y): P{X£E X £x+dx,yE£Y £ y+dy}
ixfy

Note that Fx(X) = Fxy(X, 1) Fy(y) = Fxv(H,y)
¥ ¥

Fx ()= Ofx (X, Y)dy and £, (x) = Bf v (X y)dX
-¥ -¥
Note also that if XY, then fu(xy)=fx(X)fy(y) and Fxe(xy)=Fx(X)Fv(y)

Functions of Random Variables  For a random variable X, U=u(X) may be defined as another random
variable which is afunction of the random variable X.

If u(x) is differentiable and monotone, then the pdf of the random
variable U may be easly found as fy(u)=fx(X)/|u'(x)] or
fu(u)|dul=fx(x)]dx]

If u(x) is not monotone then one has to be more careful as the function
X=u(U) may have multiple roots and these should be accounted for
while finding fy(u). If u(x) is not differentiable at some point in the
range, then delta functions will arise in the pdf of U.

Example:  Consider  u(x) = x? to generate the random varaible U from the random
variable X, where X1 [-1, 1]
From the form of the function u(x) and the range of X, we can see that -

fu(u)du = f(X)dx + fx(-X)|dx|
Since du=2xdx, we get that, dx=du/(2Qu)

f (Ju)+ f, (- Ju)
2Ju

Therefore, f, (u) =
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If we consider the case where the random variable X is uniformly distributed in

[-1, 1], then
fx(x)=0.5 for -1£x£1
=0 otherwise

Thiswill then give f, (U) = I F, (U) =+/u for 0EuE1
2Ju

This approach may be extended using the Jacobian for the case of functions of more than one variables.

Asan example of this, consider  z=g(x,y) and w=h(x,y) [Note that if only one function is given
then the second function may be
arbitrarily defined.]

Let g(x,Y) = zand h(x, y;)=w i.e. (%, Y;) aretherea solutions to these equations for given (zw)

fig Y9
: : - =[x Ty
The Jacobian J(x,y) is then defined as J (X, Y) g Th
% Ty
which may be used to get fZW(Z,W):M+ ................ +M+ ........
'J(Xliyl) 'J(Xn’yn)

where{x, yi} i=1, 2,....., n,..... aretherootsof  z=g(x,y) and w=h(x,y)

Note that if there are no real solutions for some values of (zw), then for these fa(zw)=0
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Using Expectations and Transforms

Expectations If X isarandom variable, then we can define expectations for various functions of X as -

9(X) = E{g(X)}

¥
O9(X) f5 (X)dx  for Continuous Random Variables
-y

é g(X)P{ X =x} for Discrete Random Variables

Some useful results:

E{cg(X)} = cE{g(X)}
E{g()+h(Y)} = E{g(X)} + E{h(V)}
For XY, E{g()h(Y)} = E{g(X)} E{h(Y)}

The n" moment of the random variable X isdefinedas E{ X "} = X"
Y = mean

Specificaly - _ - _
s 2 =variance=E{(X - X)?} =X?*- X

2

S « isreferred to asthe standard deviation of X

Note that S , is redly indicative of the dispersion of the random
variable X around its mean

Laplace Transform  Thisisaconvenient tool to use for continuous random variables X such that X3 0 and
is defined as

IEX (s) = L(f, (X)) =E{e ™} =¥c‘p'9‘fx (x)dx

Some useful properties of this transform are -

(a) Moment Generating Property X" = (-D" % IEx (9) ls=o0
S

(b) Given atransform, inverting it will provide the corresponding pdf fx(x) of X

(c) Multiplication in the Transform Domain would correspond to Convolution in the
r.v. domain and vice-versa.

. 0 ~ -
Forexample  L(f,(x)* f,(x)) = Lé Of. () f,(x- x)dx £= F,(S)F,(9)

& LYF(9*F(9)= L,(0,00

(d) Transform of the sum of independent random variables = Product of the
individual transforms
If random variables X and Y are such that X"Y, then we can show that -
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Fyoy (9) = E{e 5} = F, (9F, (5)

Characteristic Function (Fourier Transform)  This type of transform is useful for continuous random
variables where X may take on negative values,
i.e-pEXEp

Thisisdefinedas f , (v ) = E{€""*} = F [f«(X)] i.e. the Fourier Transform of fx(X)

Properties similar to those described for Laplace Transforms above are also applicable here -
n

dv "
(b) Multiplication in Transform Domain corresponds to Convolution in the random variable
domain and vice versa
(c) The characteristic function of the sum of independent random variables is the product of
the characteristic functions of the individual random variables

@ X" =(-j)"

fyO )] oo MomentGenerating Property

Generating Function or Probability Generating Function (Z-Transform of the Probability Distribution)

Thistransform is used for a discrete random variable X, such that X3 0. It is defined as -

¥ .

Gy()=E{z"}=a pZ =Z[Px=i})]  where p, = P{X =i}
i=0

This also has properties similar to the transforms given earlier

(@) Moment Generating Property X = G¢@D X(X-DH=GED) ... etc.
(b) If X~ X, and Y=X1+Xo,
then Gy (2) =Gy (2Gy, (2)

and Py (Y)=HY =y} = px1+x2(Y) = é_ pxl(xl) pxz(Y' X)

1

Covariance & Correlation Consider the random variables X and Y.

s2, =E[(X+Y- X-Y)}=E{(X- X)Z+E{(Y-Y)%}+2E{(X- X)(Y-VY)}
=s % +s7 +2Cov(X,Y)

Note that the Covariance of X and Y, Cov(X, Y) isdefined as -

Cov(X,Y) = E{(X- X)(Y-Y)}=XY- XY
@ I1f X2 Y, thenCov(X,Y)= 0 since XY = XY
(b) If Cov(X,Y) = 0, then the random variables X and Y are uncorrelated

Note that X*Y, implies Cov(X, Y) = 0. However, Cov(X, Y) = 0 does not imply X*Y but the
much weaker condition that X and Y are uncorrelated
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Stochastic (Random) Processes

Definition of a Sochastic Process. {X(t); tI T} isastochastic processif X(t) is arandom variable for each
tintheindex set T - usually t indicates time.

Different ways of classifying Sochastic Processes:

“Continuous Time Processes” when T isan interval and all timesin that interval are possible choices
for t.

“Discrete Time Processes” when T is a set of discrete time points with X, = X(t, ) constituting the
process.

“Continuous State Process” when X(t) can have a continuum of values possibly within afixed range.
“Discrete Sate Process’ when X(t) can only have one of a discrete set of values.

Note that X (t)=x implies that the random process is in state x at time t. The Stochastic Process X(t) is said

to be well defined if the joint distribution of the random variables X(t;), X(t2), ......... , X(t) can be
determined for every finite set of timeinstantsty, t, ........ , bk
In a stochastic sense, the random process is completely specified if the joint distribution F)z (i, t)
Fe (X, 1) = PX(t,) £ Xpyeevernemenns X(t,) £ x.}
existsfor (@) al X = (Xyeeerervenn. X,
O al T =ty t)

(c) dl possible values of n

If F)z (i, F) is known as above, then all possible stochastic dependencies between sample values of X(t)

may be found. This, however, is usualy hard to get. Typically, only some limited dependencies will be
known and different Stochastic Processes are classified based on these known dependencies. Examples of
thisleading to special processes are given next.

(a) Independent Process: For thistype of process, { X(t,)} or { X} areindependent random variables,
- 4
andtherefore, o (X;t) = fy (X))
i=1

Note that this is really a trivial case of a process as there are no dependencies
between the various X;s.

(b) Sationary Processes. These are processes where the joint distribution of the random variables
corresponding to a set of time points is invariant to a time shift of all the time
points. The processis considered Strictly Sationary if the property holds for any
choice of the number of time points. If the property holds for any choice of n
time points or less but not for any choice of n+1 time points then the process is
referred to as being Sationary of Order n. The process is referred to as being
Wide Sense Sationary (WSS if (@) E{X(t)} is independent of t and (b)
E{X(t)X(t+t)} dependsonly ont and not on't.

Sationary Processes will not be used in our description of queues and will not
be considered further here.

(c) Markov Processes: Markov Processes are ones for which the Markov Property (given below) holds.
This property states that -
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P{X () = Xy | X(6) = X oo X () = X3 = PIX (L) = X0 | X () =X}

Note that when this property is satisfied, the state of the process/system at time instant t,..,; depends only on
the state of the process/system at the previous instant t, and not on any of the earlier time instants.

Alternatively, one can say that a process is termed a Markov Process if, given the present state of the
process, its future evolution depends is independent of the past of the process. This effectively implies a
one-set dependence feature for the Markov Process where older values are forgotten. Restricted versions of
this property leads to special cases, such as -

(8) Markov Chains over a Discrete State Space

(b) Discrete-Time and Continuous- Time Markov Processes and Markov Chains

Markov Chains: The discrete random variables { X} form a Markov Chain if the probability that the next
state is x,+1 depends only on the current state x,, and not on any previous values.

For the Discrete Time case, state changes are pre-ordained to occur only at the integer
points 0, 1, 2, ...... , N (that is at the time points to, ty, t,......, t,). For the Continuous Time
case, state changes may occur anywhere in time.

Homogenous Markov Chain: A Homogenous Markov Chain is one where the transition probabilities
P{X+17] | Xy=i} isthe samefor al n. Note that one can then write that -

Transition Probability from state i to state j = p; = P{ Xn:1=) | Xn=1} "'n

It should be noted that for a homogenous Markov chain, the transition probability depends
only on the terminal states (i.e. the initial state i and the final state j) but does not depend on
when actually the transition (i ® | ) occurs.

(d) Semi-Markov Processes:  In a Semi-Markov Process, the distribution of time spent in a state can have
an arbitrary distribution but the one-step memory feature of the Markovian
property is retained. We will find processes of this type useful in some of
our analyses.

(e) Birth-Death Process: A Birth-Desth Process is a specia type of discrete-time or continuous-time
Markov Chain with the restriction that at each step, the state transitions, if
any, can occur only between neighboring states.

(g) Renewal Processes.  These are related to random walks except that our interest here lies in counting
the number of transitions that take place as a function of time.

State at time t = Number of transitionsin (0, t)
where (t; - ti;) " i arei.i.d. random variables

LetX;=(t-t,)" i be a sat of ii.d. random variables. Subject to the
conditions that they are independent and have identical distributions, the random
variables {X;} can have any distribution. Note that this corresponds to a Semi-
Markov Process.



