EE 633

Quiz -II

Maximum Marks 10

1. Mean number of jobs in a batch $=0.25+0.25(2)+0.5(3)=2.25$
$\mathrm{P}\{$ randomly selected job is first job of a batch $\}=\frac{1}{2.25}=0.444$
$\mathrm{P}\{$ randomly selected job is second job of a batch $\}=\frac{0.75}{2.25}=0.333$
$\mathrm{P}\{$ randomly selected job is first job of a batch $\}=\frac{0.5}{2.25}=0.222$
Mean Batch Service Time $=\bar{X}=\alpha(1)+0.75 \beta(1)+0.5 \gamma(1) \quad \rho=\lambda \bar{X}$

$$
\begin{aligned}
\overline{X^{2}} & =0.25 \overline{X_{1}^{2}}+0.25 \overline{\left(X_{1}+X_{2}\right)^{2}}+0.5 \overline{\left(X_{1}+X_{2}+X_{3}\right)^{2}} \\
& =\overline{X_{1}^{2}}+0.75 \overline{X_{2}^{2}}+0.5 \overline{X_{3}^{2}}+1.5 \overline{X_{1}} \overline{X_{2}}+\overline{X_{2}} \overline{X_{3}}+\overline{X_{1}} \overline{X_{3}} \\
& =\alpha(2)+0.75 \beta(2)+0.5 \gamma(2)+1.5 \alpha(1) \beta(1)+\beta(1) \gamma(1)+\alpha(1) \gamma(1)
\end{aligned}
$$

$$
\begin{aligned}
L_{B}(s) & =0.25 L_{\alpha}(s)+0.25 L_{\alpha}(s) L_{\beta}(s)+0.5 L_{\alpha}(s) L_{\beta}(s) L_{\gamma}(s) \\
& =0.25 L_{\alpha}(s)\left[1+L_{\beta}(s)+2 L_{\beta}(s) L_{\gamma}(s)\right]
\end{aligned}
$$

Therefore, using $\rho, \overline{X^{2}}$ and $L_{B}(s)$ from above, for a batch considered as one "job", we get

$$
\begin{aligned}
& L_{W q b}(s)=\frac{s(1-\rho)}{s-\lambda+\lambda L_{B}(s)} \\
& W_{q b}=\frac{\lambda \overline{X^{2}}}{2(1-\rho)}
\end{aligned}
$$

Using these, for an arbitrarily chosen job, we will get

$$
\begin{aligned}
& W_{q}=W_{q b}+\frac{0.75}{2.25} \alpha(1)+\frac{0.5}{2.25}[\alpha(1)+\beta(1)] \\
& =W_{q b}+\frac{1.25}{2.25} \alpha(1)+\frac{0.5}{2.25} \beta(1) \\
& \text { and } \\
& L_{W_{q}}(s)=L_{W_{q} b}(s)\left[\frac{1}{2.25}+\frac{0.75}{2.25} L_{\alpha}(s)+\frac{0.5}{2.25} L_{\alpha}(s) L_{\beta}(s)\right]
\end{aligned}
$$

2. $\quad 0.5\left(0.25 \lambda_{2}+0.5 \lambda_{1}\right)=\lambda_{2}=\lambda_{3} \quad \Rightarrow \quad \lambda_{2}=\lambda_{3}=0.286 \lambda_{1} \quad \lambda_{4}=2 \lambda+0.25 \lambda_{2}=2 \lambda+0.071 \lambda_{1}$ $\lambda_{1}=\lambda+\lambda_{3}+\lambda_{4}=3 \lambda+0.357 \lambda_{1} \quad \Rightarrow \quad \lambda_{1}=4.666 \lambda$

Therefore, $\quad \tilde{\lambda}=(4.666 \lambda, 1.334 \lambda, 1.334 \lambda, 2.331 \lambda) \quad$ Sanity Check $=\lambda_{X}+\lambda_{Y}=3 \lambda$
(a) For the network to be stable, we require $4.666 \lambda<\mu$ or $\rho<0.214$
(b) $\quad \tilde{\lambda}=(0.9332,0.2668,0.2668,0.4662)$
$\tilde{\rho}=(0.9332,0.2668,0.2668,0.4662)$
$\tilde{N}=(13.97,0.364,0.364,0.873)$
$\tilde{W}=(14.97,1.364,1.364,1.873)$

Average number of jobs in the system $=15.571$

Mean Transit Time from A or B and leaving from X or $Y=15.571 /(0.6)=25.952$

To calculate the Mean Transit Time for jobs entering from A and leaving from X or Y, set $\lambda_{B}=0$

Then

$$
\begin{aligned}
& 0.5\left(0.25 \lambda_{2}+0.5 \lambda_{1}\right)=\lambda_{2}=\lambda_{3} \quad \Rightarrow \lambda_{2}=\lambda_{3}=0.286 \lambda_{1} \quad \lambda_{4}=0.25 \lambda_{2}=0.071 \lambda_{1} \\
& \lambda_{1}=\lambda+\lambda_{3}+\lambda_{4}=\lambda+0.357 \lambda_{1} \quad \Rightarrow \lambda_{1}=1.555 \lambda=0.311
\end{aligned}
$$

$$
\tilde{\lambda}=(0.311,0.089,0.089,0.022)
$$

Visit Ratios $\quad \tilde{V}^{*}=(1.555,0.445,0.445,0.11)$

Mean Transit Time from A and leaving from X or Y

$$
\begin{aligned}
& =1.555 * 14.97+0.445 * 1.364+0.445 * 1.364+0.11 * 1.873 \\
& =24.698
\end{aligned}
$$

