EE 633

Quiz -II

Maximum Marks 10

1. Consider a FCFS $M^{[x]} / G / 1$ queue where the arrivals come in batches of one, two or three jobs. The generating function of the batch sizes is given to be $0.25 z+0.25 z^{2}+0.5 z^{3}$. The batch arrival rate is λ from a Poisson process.
The first job of the batch has a random service time with its $\mathrm{n}^{\text {th }}$ moment given as $\alpha(\mathrm{n})$ and the L.T. of it pdf given as $L_{\alpha}(s)$. The second job of the batch has a random service time with its $\mathrm{n}^{\text {th }}$ moment given as $\beta(n)$ and the L.T. of its pdf given as $L_{\beta}(s)$. The third job of the batch has a random service time with its $n^{\text {th }}$ moment given as $\gamma(n)$ and the L.T. of its pdf given as $L_{\gamma}(s)$. The service times of the first, second and third jobs are independent of each other.

What will be the mean queueing delay W_{q} for an arbitrary job (first, second or third in a batch) and the L.T. $\mathrm{L}_{\mathrm{wq}}(\mathrm{s})$ of its pdf?
2. Consider the open network of $M / M / 1$ queues as shown where each queue has service rate μ. For notational convenience, use $\rho=\lambda / \mu$
(a) What is the condition for this queueing network to be stable?
(b) For $\lambda=0.2$ and $\mu=1$, find the transit delay through the network for each of the following -
(i) Jobs entering from A or B and leaving from X or Y

(ii) Jobs entering from A and leaving from X or Y
[2]
[2]

