EE 633, Queueing Systems (2017-18F)
 Solution to Quiz - II

(a) If there are k arrivals in the Class 1 service time, then $T=X_{1}+k$ Class 2 Busy Periods

$$
\begin{equation*}
\bar{T}=\overline{X_{1}}+\left(\lambda_{2} \overline{X_{1}}\right)\left(\frac{\overline{X_{2}}}{1-\lambda_{2} \overline{X_{2}}}\right)=\frac{\overline{X_{1}}}{1-\lambda_{2} \overline{X_{2}}} \tag{10}
\end{equation*}
$$

and $\quad L_{T}(s)=\int_{x=0}^{\infty} e^{-s x}\left\{\sum_{k=0}^{\infty} \frac{\left(\lambda_{2} x\right)^{k}}{k!} e^{-\lambda_{2} x} L_{B P 2}^{k}(s)\right\} b_{1}(x) d x \quad$ where $\quad L_{B P 2}(s)=L_{B 2}\left(s+\lambda_{2}-\lambda_{2} L_{B P 2}(s)\right)$

Therefore, $L_{T}(s)=\int_{x=0}^{\infty} e^{-\left(s+\lambda_{2}\right) x} e^{\lambda_{2} x L_{B P}(s)} b_{1}(x) d x=L_{B 1}\left(s+\lambda_{2}-\lambda_{2} L_{B P 2}(s)\right)$ [30]
(b) Case I: No Class 1 arrival in Class 2 Busy Period (Probability $L_{B P 2}\left(\lambda_{1}\right)$)

$$
\begin{equation*}
\text { Mean length of } \mathrm{BP} \text { for this case }=\text { Mean of a Class } 2 \text { Busy Period }=\frac{\overline{X_{2}}}{1-\lambda_{2} \overline{X_{2}}} \tag{10}
\end{equation*}
$$

Case II: One or more Class 1 arrivals in Class 2 Busy Period (Probability $\left(1-L_{B P 2}\left(\lambda_{1}\right)\right)$
For this case, the Busy Period will be BP2+T where T is as given in (a)

$$
\begin{equation*}
\text { Mean length of BP for this case }=\frac{\overline{X_{2}}}{1-\lambda_{2} \overline{X_{2}}}+\frac{\overline{X_{1}}}{1-\lambda_{2} \overline{X_{2}}}=\frac{\overline{X_{1}}+\overline{X_{2}}}{1-\lambda_{2} \overline{X_{2}}} \tag{20}
\end{equation*}
$$

Mean length of BP when started by a Class 2 arrival

$$
\begin{equation*}
=L_{B P 2}\left(\lambda_{1}\right)\left(\frac{\overline{X_{2}}}{1-\lambda_{2} \overline{X_{2}}}\right)+\left(1-L_{B P 2}\left(\lambda_{1}\right)\right)\left(\frac{\overline{X_{1}}+\overline{X_{2}}}{1-\lambda_{2} \overline{X_{2}}}\right)=\frac{\left(\overline{X_{1}}+\overline{X_{2}}\right)-\overline{X_{1}} L_{B P 2}\left(\lambda_{1}\right)}{1-\lambda_{2} \overline{X_{2}}} \tag{10}
\end{equation*}
$$

(c) Mean Length of BP

$$
\begin{aligned}
& =\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}\left(\frac{\overline{X_{1}}}{1-\lambda_{2} \overline{X_{2}}}\right)+\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}}\left(\frac{\overline{X_{1}}+\overline{X_{2}}-\overline{X_{1}} L_{B P 2}\left(\lambda_{1}\right)}{1-\lambda_{2} \overline{X_{2}}}\right) \\
& =\frac{\left(\lambda_{1}-\lambda_{2} L_{B P 2}\left(\lambda_{1}\right)\right) \overline{X_{1}}+\lambda_{2}\left(\overline{X_{1}}+\overline{X_{2}}\right)}{\left(\lambda_{1}+\lambda_{2}\right)\left(1-\lambda_{2} \overline{X_{2}}\right)}
\end{aligned}
$$

