EE 633, Queueing Systems (2016-17F)
Solutions to Quiz - Il

Consider an M/G/1 queue where, if the idle period is longer than T (fixed), then the first customer in the
busy period following that idle period requires special service with service time X' (mean X", second
moment X 2, pdf b"(t) and LT of pdf L.(s)). All other customers are served with the normal service

time X (mean X , second moment X, pdf b(t) and LT of pdfL,(s)). Consider the queue to be in
equilibrium with arrivals coming from a Poisson process with average rate A.

(a) Use the Busy Period approach to find -
(i) The probability of the server being idle

(ii) The overall mean service time X .
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Considering both types of busy periods,
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(b) What will be the Mean Residual Service Time that will be observed by an arriving customer?
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Of the total number of cycles, a fraction € *" will have a Busy Period where the first service is of length

X" and a fraction (1—e'ﬂ) where the first service is of length X . Therefore, in a long interval of time t,



if the total number of arrivals is M(t), then there will be N(t) =e " L(t) arrivals which will be served with
service times, each of length X”; the other M-N will be served with service time X . Using this,
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(c) Write that State Transition Equations relating ni.1 to n; for this queue.

n, =a., n, =0, probability (1—e™")
=a, n; =0, probability e *T
=n+a, -1 n =1

(d) Use the equation of (c) to confirm your result of part (i) of (a)

Taking expectations of both sides of the equation of (c) for a queue in equilibrium
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This gives P, = 1_/11 —— which is the same as the result obtained in part (i) of (a)
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Bonus Questions
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If you want to cross check with the answer of (f) — not required to be done!
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() Using (c), we get -
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Not required to be done
We can obtain p, from the above using P(1) =1or just use the one that we had obtained earlier. We can

also use this to find the mean number in the system and cross-check the result we got in part (e).
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Substituting for p, which was obtained earlier, we get
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Note that this matches what was obtained from the Residual Life Approach earlier




