EE 633, Queueing Systems (2016-17F)
 Solutions to Quiz - II

Consider an M/G/1 queue where, if the idle period is longer than T (fixed), then the first customer in the busy period following that idle period requires special service with service time X^{*} (mean $\overline{X^{*}}$, second moment $\overline{X^{* 2}}$, pdf $b^{*}(t)$ and LT of pdf $\left.L_{B^{*}}(s)\right)$. All other customers are served with the normal service time X (mean \bar{X}, second moment $\overline{X^{2}}$, pdf $b(t)$ and LT of $\operatorname{pdf} L_{B}(s)$). Consider the queue to be in equilibrium with arrivals coming from a Poisson process with average rate λ.
(a) Use the Busy Period approach to find -
(i) The probability of the server being idle
(ii) The overall mean service time X.
(i) $\bar{I}=\frac{1}{\lambda} \quad \overline{B P}=\left(1-e^{-\lambda T}\right) \frac{\bar{X}}{1-\lambda \bar{X}}+e^{-\lambda T} \frac{\overline{X^{*}}}{1-\lambda \bar{X}}=\frac{\bar{X}+e^{-\lambda T}\left(\overline{X^{*}}-\bar{X}\right)}{1-\lambda \bar{X}} \quad \bar{T}_{\text {cycle }}=\frac{1+\lambda e^{-\lambda T}\left(\overline{X^{*}}-\bar{X}\right)}{\lambda(1-\lambda \bar{X})}$ $\Rightarrow \mathrm{P}\{$ server idle $\}=\frac{\bar{I}}{\bar{I}+\overline{B P}}=\frac{1-\lambda \bar{X}}{1+\lambda e^{-\lambda T}\left(\overline{X^{*}}-\bar{X}\right)}$
(ii) Probability $=\left(1-e^{-\lambda T}\right) \quad$ Mean Length of $\mathrm{BP}=\frac{\bar{X}}{1-\lambda \bar{X}}$ Mean Number $=\frac{1}{1-\lambda \bar{X}}$

Probability $=e^{-\lambda T} \quad$ Mean Length of $\mathrm{BP}=\frac{\overline{X^{*}}}{1-\lambda \bar{X}} \quad$ Mean Number $=1+\frac{\lambda \overline{X^{*}}}{1-\lambda \bar{X}}=\frac{1+\lambda\left(\overline{X^{*}}-\bar{X}\right)}{1-\lambda \bar{X}}$
Considering both types of busy periods,

$$
\overline{B P}=\frac{\bar{X}+e^{-\lambda T}\left(\overline{X^{*}}-\bar{X}\right)}{1-\lambda \bar{X}} \quad \text { Mean Number Served in Busy Period }=\frac{1+\lambda e^{-\lambda T}\left(\overline{X^{*}}-\bar{X}\right)}{1-\lambda \bar{X}}
$$

Therefore

$$
X=\frac{\bar{X}+e^{-\lambda T}\left(\overline{X^{*}}-\bar{X}\right)}{1+\lambda e^{-\lambda T}\left(\overline{X^{*}}-\bar{X}\right)}
$$

(b) What will be the Mean Residual Service Time that will be observed by an arriving customer?

$$
\bar{T}_{\text {cycle }}=\frac{1+\lambda e^{-\lambda T}\left(\overline{X^{*}}-\bar{X}\right)}{\lambda(1-\lambda \bar{X})}
$$

Number of cycles in time interval of length $t=L(t)=\frac{t}{\bar{T}_{\text {cycle }}}=\frac{t \lambda(1-\lambda \bar{X})}{1+\lambda e^{-\lambda T}\left(\overline{X^{*}}-\bar{X}\right)}$
Of the total number of cycles, a fraction $e^{-\lambda T}$ will have a Busy Period where the first service is of length X^{*} and a fraction ($1-e^{-\lambda T}$) where the first service is of length X. Therefore, in a long interval of time t,
if the total number of arrivals is $M(t)$, then there will be $N(t)=e^{-\lambda T} L(t)$ arrivals which will be served with service times, each of length X^{*}; the other $M-N$ will be served with service time X. Using this,

$$
N(t)=\frac{t e^{-\lambda T} \lambda(1-\lambda \bar{X})}{1+\lambda e^{-\lambda T}\left(\overline{X^{*}}-\bar{X}\right)} \Rightarrow \frac{N(t)}{t}=\frac{e^{-\lambda T} \lambda(1-\lambda \bar{X})}{1+\lambda e^{-\lambda T}\left(\overline{X^{*}}-\bar{X}\right)}
$$

Therefore,

$$
\begin{aligned}
& R=\lim _{t \rightarrow \infty}\left[\frac{1}{t} \sum_{i=1}^{M-N} \frac{X_{i}^{2}}{2}+\frac{1}{t} \sum_{j=1}^{N} \frac{X_{j}^{* 2}}{2}\right]=\lim _{t \rightarrow \infty}\left[\frac{M-N}{t}\left(\frac{\overline{X^{2}}}{2}\right)+\frac{N}{t}\left(\frac{\overline{X^{* 2}}}{2}\right)\right] \\
& =\left(\lambda-\frac{e^{-\lambda T} \lambda(1-\lambda \bar{X})}{1+\lambda e^{-\lambda T}\left(\overline{X^{*}}-\bar{X}\right)}\right)\left(\frac{\overline{X^{2}}}{2}\right)+\left(\frac{e^{-\lambda T} \lambda(1-\lambda \bar{X})}{1+\lambda e^{-\lambda T}\left(\overline{X^{*}}-\bar{X}\right)}\right)\left(\frac{\overline{X^{* 2}}}{2}\right) \\
& =\frac{\lambda \overline{X^{2}}}{2}+\frac{e^{-\lambda T} \lambda(1-\lambda \bar{X})}{1+\lambda e^{-\lambda T}\left(\overline{X^{*}}-\bar{X}\right)}\left(\frac{\overline{X^{* 2}}-\overline{X^{2}}}{2}\right)
\end{aligned}
$$

(c) Write that State Transition Equations relating n_{i+1} to n_{i} for this queue.

$$
\begin{aligned}
n_{i+1} & =a_{i+1} & & n_{i}=0, \text { probability }\left(1-e^{-\lambda T}\right) \\
& =a_{i+1}^{*} & & n_{i}=0, \text { probability } e^{-\lambda T} \\
& =n_{i}+a_{i+1}-1 & & n_{i} \geq 1
\end{aligned}
$$

(d) Use the equation of (c) to confirm your result of part (i) of (a)

Taking expectations of both sides of the equation of (c) for a queue in equilibrium

$$
\begin{aligned}
& \bar{n}=p_{0}\left[\left(1-e^{-\lambda T}\right) \lambda \bar{X}+e^{-\lambda T} \lambda \overline{X^{*}}\right]+\bar{n}+\left(1-p_{0}\right)(\lambda \bar{X}-1) \\
& p_{0}\left[1+\lambda e^{-\lambda T}\left(\overline{X^{*}}-\bar{X}\right)\right]=1-\lambda \bar{X}
\end{aligned}
$$

This gives $\quad p_{0}=\frac{1-\lambda \bar{X}}{1+\lambda e^{-\lambda T}\left(\overline{X^{*}}-\bar{X}\right)}$ which is the same as the result obtained in part (i) of (a)

Bonus Questions

(e) $\quad W_{q}=N_{q} \bar{X}+R \quad R=\frac{\lambda \overline{X^{2}}}{2}+\frac{e^{-\lambda T} \lambda(1-\lambda \bar{X})}{1+\lambda e^{-\lambda T}\left(\overline{X^{*}}-\bar{X}\right)}\left(\frac{\overline{X^{* 2}}-\overline{X^{2}}}{2}\right)$

Therefore, $\quad W_{q}=\left(\frac{\lambda \overline{X^{2}}}{2(1-\lambda \bar{X})}\right)+\frac{\lambda e^{-\lambda T}\left(\overline{X^{* 2}}-\overline{X^{2}}\right)}{2\left(1+\lambda e^{-\lambda T}\left(\overline{X^{*}}-\bar{X}\right)\right)}$
and

$$
W=W_{q}+X=\left(\frac{\lambda \overline{X^{2}}}{2(1-\lambda \bar{X})}\right)+\frac{\lambda e^{-\lambda T}\left(\overline{X^{* 2}}-\overline{X^{2}}\right)}{2\left(1+\lambda e^{-\lambda T}\left(\overline{X^{*}}-\bar{X}\right)\right)}+\frac{\bar{X}+e^{-\lambda T}\left(\overline{X^{*}}-\bar{X}\right)}{1+\lambda e^{-\lambda T}\left(\overline{X^{*}}-\bar{X}\right)}
$$

If you want to cross check with the answer of (\mathbf{f}) - not required to be done!

$$
N=\lambda W=\left(\frac{\lambda^{2} \overline{X^{2}}}{2(1-\lambda \bar{X})}\right)+\frac{\lambda^{2} e^{-\lambda T}\left(\overline{X^{* 2}}-\overline{X^{2}}\right)}{2\left(1+\lambda e^{-\lambda T}\left(\overline{X^{*}}-\bar{X}\right)\right)}+\frac{\lambda \bar{X}+\lambda e^{-\lambda T}\left(\overline{X^{*}}-\bar{X}\right)}{1+\lambda e^{-\lambda T}\left(\overline{X^{*}}-\bar{X}\right)}
$$

(f) Using (c), we get -

$$
\begin{aligned}
P(z) & =E\left\{z^{n}\right\}=p_{0}\left(1-e^{-\lambda T}\right) A(z)+p_{0} e^{-\lambda T} A^{*}(z)+A(z) \sum_{n=1}^{\infty} z^{n-1} p_{n} \\
& =p_{0}\left[A(z)\left(1-e^{-\lambda T}\right)+A^{*}(z) e^{-\lambda T}+\frac{A(z)}{z}\left\{P(z)-p_{0}\right\}\right]
\end{aligned}
$$

Therefore,

$$
P(z)=p_{0}\left[\frac{(z-1) A(z)}{z-A(z)}+e^{-\lambda T} \frac{z\left\{A^{*}(z)-A(z)\right\}}{z-A(z)}\right] \quad A(z)=L_{B}(\lambda-\lambda z) \quad A^{*}(z)=L_{B^{*}}(\lambda-\lambda z)
$$

Not required to be done

We can obtain p_{0} from the above using $P(1)=1$ or just use the one that we had obtained earlier. We can also use this to find the mean number in the system and cross-check the result we got in part (e).

$$
\begin{aligned}
& (z-A) P=p_{0}\left[(z-1) A+e^{-\lambda T} z\left(A^{*}-A\right)\right] \\
& (z-A) P^{\prime}+\left(1-A^{\prime}\right) P=p_{0}\left[(z-1) A^{\prime}+A+e^{-\lambda T}\left\{z\left(A^{*}-A^{\prime}\right)+\left(A^{*}-A\right)\right\}\right]
\end{aligned}
$$

Evaluating at $z=1$, we get

$$
\begin{aligned}
& (1-\lambda \bar{X})=p_{0}\left[1+\lambda e^{-\lambda T}\left(\overline{X^{*}}-\bar{X}\right)\right] \quad \Rightarrow p_{0}=\frac{1-\lambda \bar{X}}{1+\lambda e^{-\lambda T}\left(\overline{X^{*}}-\bar{X}\right)} \\
& (z-A) P^{\prime \prime}+2\left(1-A^{\prime}\right) P^{\prime}-A^{\prime \prime} P=p_{0}\left[(z-1) A^{\prime \prime}+2 A^{\prime}+e^{-\lambda T}\left\{z\left(A^{* \prime \prime}-A^{\prime \prime}\right)+2\left(A^{\prime \prime}-A^{\prime}\right)\right\}\right]
\end{aligned}
$$

Evaluating at $z=1$, we get

$$
\begin{aligned}
2(1-\lambda \bar{X}) N-\lambda^{2} \overline{X^{2}} & =p_{0}\left[2 \lambda \bar{X}+\lambda^{2} e^{-\lambda T}\left(\overline{X^{* 2}}-\overline{X^{2}}\right)+2 \lambda e^{-\lambda T}\left(\overline{X^{*}}-\bar{X}\right)\right] \\
& =p_{0}\left[2 \lambda\left\{\bar{X}+e^{-\lambda T}\left(\overline{X^{*}}-\bar{X}\right)\right\}\right]+p_{0} \lambda^{2} e^{-\lambda T}\left(\overline{X^{* 2}}-\overline{X^{2}}\right)
\end{aligned}
$$

Substituting for p_{0} which was obtained earlier, we get

$$
N=\lambda W=\left(\frac{\lambda^{2} \overline{X^{2}}}{2(1-\lambda \bar{X})}\right)+\frac{\lambda^{2} e^{-\lambda T}\left(\overline{X^{* 2}}-\overline{X^{2}}\right)}{2\left(1+\lambda e^{-\lambda T}\left(\overline{X^{*}}-\bar{X}\right)\right)}+\frac{\lambda \bar{X}+\lambda e^{-\lambda T}\left(\overline{X^{*}}-\bar{X}\right)}{1+\lambda e^{-\lambda T}\left(\overline{X^{*}}-\bar{X}\right)}
$$

Note that this matches what was obtained from the Residual Life Approach earlier

