Answers can be left in terms of appropriate transforms but you must clearly state how those transforms are to be found.

Consider an M/G/1 queue where there are two classes of customers, Class 1 and Class 2 with respective arrival rates λ_{1} and λ_{2}. Entry of the lower priority (Class 1) customers is restricted such that there can at the most be ONE Class 1 customer in the system at any time - waiting for service or being served. Class 1 customers denied entry into the system leave without service. Moreover, a Class 1 service can be preempted by Class 2 customers. The pre-emption of Class 1 service, if it occurs, is of the Preemptive Resume type. (Of course, a Class 1 service cannot begin if there are any Class 2 customers in the system.) Class 2 customers get served with higher priority and there is no limit on the number of Class 2 customers that can be there in the system. The service time of Class 1 customers is given by the random variable X_{1} with the usual parameters $b_{1}(t), B_{1}(t), L_{B 1}(s)$. The service time of Class 2 customers is given by the random variable X_{2} with the usual parameters $b_{2}(t), B_{2}(t), L_{B 2}(s)$.
(a) Let T be the total (random) duration of a Class

1 service. Find the mean \bar{T} and the Laplace
Transform $L_{T}(s)$ of its pdf
[10+30]

The system can be viewed as having a Busy-Idle cycle where the Idle Period is when the system is completely empty and the Busy Period may be

(b) What will be the Mean Length of a Busy Period which is started with a Class 2 arrival?
[Hint: There are two cases to consider here - one where there are no Class 1 arrivals in the initial Class 2 Busy Period and the other where there are one or more Class 1 arrivals in that busy period. The probabilities of these two cases also have to be used.)
[10+20+10]
(c) What will be the Mean Length of the Busy Period?
[20]

Standard M/G/1 results that may be useful (standard notation)

$$
\rho=\lambda \bar{X} \quad P(z)=\frac{(1-\rho)(1-z) L_{B}(\lambda-\lambda z)}{L_{B}(\lambda-\lambda z)-z} \quad \overline{B P}=\frac{\bar{X}}{1-\lambda \bar{X}} \quad L_{B P}(s)=L_{B}\left(s+\lambda-\lambda L_{B P}(s)\right)
$$

$\mathrm{P}\{$ no arrivals in a random interval of length $T\}=L_{T}(\lambda)$
Things to do at home (not graded) - Find the total traffic carried and the Class 1 traffic that is actually carried. Subtracting will give you the Class 2 traffic that is carried. Verify that this is $\lambda_{2} \overline{X_{2}}$ as expected!

