EE 633, Queueing Systems (2016-17F) Quiz – II

Consider an M/G/1 queue where, if the idle period is longer than T (fixed), then **the first customer in the busy period following that idle period** requires special service with service time X^* (mean $\overline{X^*}$, second moment $\overline{X^{*2}}$, pdf $b^*(t)$ and LT of pdf $L_{B^*}(s)$). All other customers are served with the normal service time X (mean \overline{X} , second moment $\overline{X^2}$, pdf b(t) and LT of pdf $L_B(s)$). Consider the queue to be in equilibrium with arrivals coming from a Poisson process with average rate λ .

(a) Use the Busy Period approach to find -

(1+2)

- (i) The probability of the server being idle
- (ii) The overall mean service time \boldsymbol{X} .

(b) What will be the Mean Residual Service Time that will be observed by an arriving customer?	(4)
(c) Write the State Transition Equations relating n_i to n_{i+1} for this queue.	(1)
(d) Use the equation of (c) to confirm your result of part (i) of (a).	(2)

Bonus Questions:

(e) Continue the analysis of (b) to find W_q , the mean waiting time in queue, for this system. Use it to find the mean transit time W through the system (1+2)

(f) Continue the analysis using the equation of (c) to find P(z), the generating function of the number in the system. (2)

Note: Try the bonus questions only if you have time after you complete parts (a)-(d). **There will not be any part marking for the bonus questions** and the final answer given for these must be *adequately* simplified