EE 633, Queueing Systems (2016-17F)
 Solution to Quiz - I

(a) State Transition Diagram

States defined as 0: System Empty
1A: One user served by Teller A
1B: One user served by Teller B
$n, n \geq 2$: Normal system state with both tellers working

(b) Balance Equations \qquad one equation out of the first four is redundant!

$$
\begin{aligned}
& \lambda p_{0}=2 \mu p_{1 A}+\mu p_{1 B} \\
& (\lambda+2 \mu) p_{1 A}=\lambda p_{0}+\mu p_{2} \\
& p_{1 B}(\lambda+\mu)=2 \mu p_{2} \\
& \lambda\left(p_{1 A}+p_{1 B}\right)=3 \mu p_{2} \\
& \ldots \ldots \\
& \lambda p_{n-1}=3 \mu p_{n} \quad n \geq 3
\end{aligned}
$$

(c) State Probabilities as a function of $\boldsymbol{p}_{\mathbf{2}}$

Defining $\rho=\frac{\lambda}{\mu}$ and solving the above equations, we get -

$$
\begin{aligned}
& p_{1 B}=\frac{2}{1+\rho} p_{2} \quad p_{1 A}=\frac{3+\rho}{\rho(1+\rho)} p_{2} \\
& p_{0}=\frac{2(3+2 \rho)}{\rho^{2}(1+\rho)} p_{2} \\
& p_{n}=\left(\frac{\lambda}{3 \mu}\right)^{n-2} p_{2}=\left(\frac{\rho}{3}\right)^{n-2} p_{2} \quad n \geq 2
\end{aligned}
$$

The last expression holds only if $\boldsymbol{\lambda}<3 \boldsymbol{\mu}$. This is the condition for the queue to be stable
(d) The Normalization Condition will be the following

$$
p_{2}\left[\frac{2}{1+\rho}+\frac{3+\rho}{\rho(1+\rho)}+\frac{6+4 \rho}{\rho^{2}(1+\rho)}+\frac{3}{3-\rho}\right]=1
$$

(e) Bonus for Teller A: (Justification) Suppose P_{A} is the probability that Teller A is working and P_{B} that Teller B is working. Then taking into account the fact that Teller A works at twice the speed of Teller B, their bonus payments should be in the ratio $2 P_{A}: P_{B}$.

$$
\begin{aligned}
& P_{A}=p_{1 A}+\sum_{n=2}^{\infty} p_{n}=\left[\frac{3+\rho}{\rho(1+\rho)}+\frac{3}{3-\rho}\right] p_{2}=\frac{9+3 \rho+2 \rho^{2}}{\rho(1+\rho)(3-\rho)} p_{2} \\
& P_{B}=p_{1 B}+\sum_{n=2}^{\infty} p_{n}=\left[\frac{2}{1+\rho}+\frac{3}{3-\rho}\right] p_{2}=\frac{9+\rho}{(1+\rho)(3-\rho)} p_{2}
\end{aligned}
$$

Therefore Teller A should be paid a bonus amount of -

$$
2 Z \frac{\left(\frac{9+3 \rho+2 \rho^{2}}{\rho(1+\rho)(3-\rho)}\right)}{\left(\frac{9+\rho}{(1+\rho)(3-\rho)}\right)}=2 Z\left[\frac{9+3 \rho+2 \rho^{2}}{\rho(9+\rho)}\right]
$$

