EE 633, Queueing Systems (2016-17F) Quiz – I

Our bank operates with two tellers - Teller A and Teller B. Teller A works at rate $\mu_A=2\mu$ while Teller B works at rate $\mu_B=\mu$ where the service times are exponentially distributed. An arrival coming when the system is empty will always go to Teller A for service, i.e. Teller A is the preferred server

Customers arriving to the bank come from a Poisson process with rate λ .

For notational convenience, use $\rho = \lambda/\mu$ in your expressions and equations.

 a) Draw the State Transition Diagram of the system using an appropriate definition of the system state [2] 	
b) Write the balance equations that you would need to solve for this system. [2]	I
c) Solve the balance equations to obtain all the state probabilities as functions of $p_2 = P\{2 \text{ users in the system}\}$. Specify the condition under which the system will have an equilibrium solution. [2+1]	

- (d) Write the Normalization Condition that would be needed to solve for p₂. [1]
 Note that you are only required to write the equation in terms of p₂ and ρ. You are not required to solve this to actually find p₂.
- (e) At the end of the year, the Bank Manager decides to give Teller B a bonus of Rs Z. How much should he/she pay Teller A? (You must FIRST give your justification for your answer and then give your calculations.). Note that you do not need to know the actual value of p₂ to decide this. [2]