EE 633, Queueing Systems (2016-17F)

Quiz - I

Our bank operates with two tellers - Teller A and Teller B. Teller A works at rate $\boldsymbol{\mu}_{A}=\mathbf{2} \boldsymbol{\mu}$ while Teller B works at rate $\boldsymbol{\mu}_{B}=\boldsymbol{\mu}$ where the service times are exponentially distributed. An arrival coming when the system is empty will always go to Teller A for service, i.e. Teller A is the preferred server

Customers arriving to the bank come from a Poisson process with rate λ.

For notational convenience, use $\rho=\lambda / \mu$ in your expressions and equations.
(a) Draw the State Transition Diagram of the system using an appropriate definition of the system state.
(b) Write the balance equations that you would need to solve for this system.
(c) Solve the balance equations to obtain all the state probabilities as functions of $p_{2}=P\{2$ users in the system $\}$. Specify the condition under which the system will have an equilibrium solution.
(d) Write the Normalization Condition that would be needed to solve for p_{2}. Note that you are only required to write the equation in terms of p_{2} and ρ. You are not required to solve this to actually find p_{2}.
(e) At the end of the year, the Bank Manager decides to give Teller B a bonus of Rs Z. How much should he/she pay Teller A? (You must FIRST give your justification for your answer and then give your calculations.). Note that you do not need to know the actual value of \boldsymbol{p}_{2} to decide this.

