EE 633, Queueing Systems

Mid-Term Examination (2012-2013S)

Solutions

1. (a) State Transition Diagram - States 1 and 2 are for LP jobs in system and 1^{*} is for one HP job in the system

(b) $\quad \lambda_{H}\left(p_{0}+p_{1}+p_{2}\right)=\mu_{H} p_{1^{*}}$

Since $\left(p_{0}+p_{1}+p_{2}\right)=1-p_{1^{*}} \quad$ we get $\quad p_{1^{*}}=\frac{\lambda_{H}}{\mu_{H}+\lambda_{H}}$
Therefore, $\mathrm{P}\{$ system has no HP customers $\}=1-p_{1^{*}}=\frac{\mu_{H}}{\mu_{H}+\lambda_{H}}$
(c) $\quad p_{2}\left(\lambda_{H}+\mu_{L}\right)=p_{1} \lambda_{L} \quad$ and $\quad p_{1}\left(\lambda_{H}+\lambda_{L}+\mu_{L}\right)=p_{0} \lambda_{L}+p_{2} \mu_{L}$

Solving - $\quad p_{1}=p_{0} \frac{\lambda_{L}\left(\lambda_{H}+\mu_{L}\right)}{\left(\lambda_{H}^{2}+2 \lambda_{H} \mu_{L}+\mu_{L}^{2}+\lambda_{L} \lambda_{H}\right)} \quad p_{2}=p_{0} \frac{\lambda_{L}^{2}}{\left(\lambda_{H}^{2}+2 \lambda_{H} \mu_{L}+\mu_{L}^{2}+\lambda_{L} \lambda_{H}\right)}$
Using the Normalization Constraint $\left(p_{0}+p_{1}+p_{2}\right)=1-p_{1^{*}}=\frac{\mu_{H}}{\mu_{H}+\lambda_{H}}$
Therefore, $p_{0} \frac{\lambda_{H}^{2}+2 \lambda_{H} \mu_{L}+\mu_{L}^{2}+\lambda_{L} \lambda_{H}+\lambda_{L}\left(\lambda_{H}+\mu_{L}\right)+\lambda_{L}^{2}}{\left(\lambda_{H}^{2}+2 \lambda_{H} \mu_{L}+\mu_{L}^{2}+\lambda_{L} \lambda_{H}\right)}=\frac{\mu_{H}}{\lambda_{H}+\mu_{H}}$

$$
\begin{aligned}
p_{0} & =\frac{\left(\lambda_{H}^{2}+2 \lambda_{H} \mu_{L}+\mu_{L}^{2}+\lambda_{L} \lambda_{H}\right) \mu_{H}}{\left(\lambda_{H}+\mu_{H}\right)\left(\lambda_{H}^{2}+2 \lambda_{H} \mu_{L}+\mu_{L}^{2}+\lambda_{L} \lambda_{H}+\lambda_{L}\left(\lambda_{H}+\mu_{L}\right)+\lambda_{L}^{2}\right)} \\
& =\frac{\left(\lambda_{H}^{2}+2 \lambda_{H} \mu_{L}+\mu_{L}^{2}+\lambda_{L} \lambda_{H}\right) \mu_{H}}{\left(\lambda_{H}+\mu_{H}\right)\left[\left(\lambda_{H}+\mu_{L}+\lambda_{L}\right)^{2}-\lambda_{L} \mu_{L}\right]}
\end{aligned}
$$

2
(a)

$$
\begin{aligned}
L_{B}(s) & =0.5 L_{B 1}(s)+0.5 L_{B 2}(s)=0.5 L_{B 1}(s)+0.5 \frac{\mu}{s+\mu} L_{B 1}(s) \\
& =0.5 L_{B 1}(s) \frac{s+2 \mu}{s+\mu}
\end{aligned}
$$

where

$$
\begin{aligned}
L_{B 1}(s) & =0.5\left(\frac{\mu}{s+\mu}\right) \sum_{i=0}^{\infty}\left[0.5\left(\frac{\mu}{s+\mu}\right)\left(\frac{\mu}{s+\mu}\right)\right]^{i} \\
& =\frac{\mu(s+\mu)}{\left(2 s^{2}+4 \mu s+\mu^{2}\right)}
\end{aligned}
$$

Alternative approach -

$$
L_{B 1}(s)=0.5\left(\frac{\mu}{s+\mu}\right)+0.5\left(\frac{\mu}{s+\mu}\right)^{2} L_{B 1}(s)
$$

$$
\text { Therefore } \quad L_{B 1}(s)=\frac{\mu(s+\mu)}{\left(2 s^{2}+4 \mu s+\mu^{2}\right)} \text { as before }
$$

Therefore, LT of the pdf of the overall service time is $L_{B}(s)=\frac{0.5 \mu(s+2 \mu)}{\left(2 s^{2}+4 \mu s+\mu^{2}\right)}$
(b) $\bar{X}=-\left.L_{B}^{\prime}(s)\right|_{s=0}$

$$
\begin{aligned}
L_{B}^{\prime}(s) & =\frac{0.5 \mu}{\left(2 s^{2}+4 \mu s+\mu^{2}\right)}-\frac{0.5 \mu(s+2 \mu)(4 s+4 \mu)}{\left(2 s^{2}+4 \mu s+\mu^{2}\right)^{2}} \\
& =-\frac{0.5 \mu\left(2 s^{2}+8 \mu s+7 \mu^{2}\right)}{\left(2 s^{2}+4 \mu s+\mu^{2}\right)^{2}}
\end{aligned}
$$

Therefore $\bar{X}=\frac{3.5}{\mu}$
The $M /-/ 1$ queue will be stable if $\lambda \bar{X}<1$ or $\frac{\lambda}{\mu}<3.5^{-1}=0.286$
(c) State Transition Diagram with the usual definition of system states

3.
(a) $\bar{I}=$ Mean Idle Period in a cycle

$$
\begin{aligned}
\bar{I} & =p\left[\bar{V}+\int_{0}^{\infty} e^{-\lambda v} f_{V}(v) \frac{1}{\lambda} d v\right]+(1-p) \frac{1}{\lambda}=\frac{1}{\lambda}+p \frac{\lambda \bar{V}+L_{V}(\lambda)-1}{\lambda} \\
& =\frac{1+p\left(\lambda \bar{V}+L_{V}(\lambda)-1\right)}{\lambda}
\end{aligned}
$$

We can find the mean Busy Period explicitly to find the Mean Cycle Length, or simply use the fact that $\frac{\bar{I}}{\bar{T}_{\text {cycle }}}=(1-\lambda \bar{X})$ to get

$$
\begin{equation*}
\bar{T}_{\text {cycle }}=\frac{1+p\left(\lambda \bar{V}+L_{V}(\lambda)-1\right)}{\lambda(1-\lambda \bar{X})} \tag{5}
\end{equation*}
$$

Therefore $\quad P(V)=\frac{p \bar{V}}{\bar{T}_{\text {cycle }}}=\frac{p \lambda \bar{V}(1-\lambda \bar{X})}{1+p\left(\lambda \bar{V}+L_{V}(\lambda)-1\right)}$

Note: To find the Mean Busy Period explicitly, we can do the following -

$$
\begin{aligned}
\overline{B P} & =(1-p)\left(\frac{\bar{X}}{1-\lambda \bar{X}}\right)+p\left[\sum_{n=1}^{\infty} \int_{0}^{\infty} \frac{(\lambda v)^{n}}{n!} e^{-\lambda v} f_{V}(v)\left(\frac{n \bar{X}}{1-\lambda \bar{X}}\right) d v+\int_{0}^{\infty} e^{-\lambda v} f_{V}(v)\left(\frac{\bar{X}}{1-\lambda \bar{X}}\right) d v\right] \\
& =\left(\frac{\bar{X}}{1-\lambda \bar{X}}\right)\left[1+p\left(\lambda \bar{V}+L_{V}(\lambda)-1\right)\right]
\end{aligned}
$$

Using this $\bar{T}_{\text {cycle }}$ can be found to give the same result as given earlier.
(b) Consider a large time interval t when the queue is in equilibrium. Let R_{t} be the mean residual time (service or vacation) in this interval. Let M be the number of arrivals and N the number of vacations in this interval.

$$
\begin{aligned}
& \lim _{t \rightarrow \infty}\left(\frac{M}{t}\right)=\lambda \quad \lim _{t \rightarrow \infty}\left(\frac{N}{t}\right)=\frac{p}{\bar{T}_{\text {cycle }}}=\frac{p \lambda(1-\lambda \bar{X})}{1+p\left(\lambda \bar{V}+L_{V}(\lambda)-1\right)} \\
& R=\lim _{t \rightarrow \infty} R_{t}=\frac{\lambda \overline{X^{2}}}{2}+\frac{p \lambda(1-\lambda \bar{X})}{1+p\left(\lambda \bar{V}+L_{V}(\lambda)-1\right)}\left(\frac{V^{2}}{2}\right)
\end{aligned}
$$

Therefore $\quad W_{q}=\frac{R}{1-\lambda \bar{X}}=\frac{\lambda \overline{X^{2}}}{2(1-\lambda \bar{X})}+\frac{p \lambda}{1+p\left(\lambda \bar{V}+L_{V}(\lambda)-1\right)}\left(\frac{\overline{V^{2}}}{2}\right)$
(Note: The case $p=1$ corresponds to the standard single vacation $M / G / 1$ queue)
Therefore $\quad N_{q}=\lambda W_{q}=\frac{\lambda^{2} \overline{X^{2}}}{2(1-\lambda \bar{X})}+\frac{p \lambda^{2}}{1+p\left(\lambda \bar{V}+L_{V}(\lambda)-1\right)}\left(\frac{\overline{V^{2}}}{2}\right)$
(c) Let NV be the event of no vacation (probability (1-p)) in a cycle and NV * the event of one vacation in a cycle. If there is a vacation, then let $j(j \geq 0)$ be the number of arrivals in that vacation.

$$
\left.\begin{array}{rlrlr}
n_{i+1} & =n_{i}+a_{i+1}-1 & & n_{i} \geq 1 & f_{j}=\int_{v=0}^{\infty} \frac{(\lambda v)^{j}}{j!} e^{-\lambda v} f_{V}(v) d v \\
& =a_{i+1} & & n_{i}=0, N V \\
& =a_{i+1} & & n_{i}=0, N V^{*}, j=0 \\
& =a_{i+1}+j-1 & & n_{i}=0, N V^{*}, j \geq 1 &
\end{array} \quad \begin{array}{c}
\text { where }
\end{array}\right)=\sum_{j=0}^{\infty} f_{j} z^{j}=L_{V}(\lambda-\lambda z)
$$

Taking expectations of LHS and RHS at equilibrium

$$
\begin{array}{ll}
\bar{n}=\lambda \bar{X}+\bar{n}-\left(1-p_{0}\right)+p_{0} p \sum_{j=1}^{\infty}(j-1) f_{j} \\
1-\lambda \bar{X}=p_{0}\left[1+p\left(\lambda \bar{V}-1+L_{V}(\lambda)\right)\right]
\end{array} \quad p_{0}=\frac{1-\lambda \bar{X}}{1+p\left(\lambda \bar{V}+L_{V}(\lambda)-1\right)}
$$

(Note: Compare with case $p=1$ as mentioned before.)

$$
\begin{aligned}
& P(z)=A(z)\left[\sum_{n=1}^{\infty} z^{n-1} p_{n}+p_{0}(1-p)+p_{0} p f_{0}+p_{0} p \sum_{j=1}^{\infty} z^{j-1} f_{j}\right] \\
& =A(z)\left[\frac{1}{z}\left\{P(z)-p_{0}\right\}+p_{0}(1-p)+p_{0} p L_{V}(\lambda)+\frac{p_{0} p}{z}\left\{F(z)-L_{V}(\lambda)\right\}\right] \\
& {[z-A(z)] P(z)=p_{0} A(z)\left[p\left\{L_{V}(\lambda-\lambda z)-(1-z) L_{V}(\lambda)\right\}-1+z(1-p)\right]} \\
& \quad=p_{0} A(z)\left[p\left\{L_{V}(\lambda-\lambda z)-(1-z) L_{V}(\lambda)\right\}+z(1-p)-1\right]
\end{aligned}
$$

Therefore $\quad P(z)=p_{0}\left(\frac{A(z)}{z-A(z)}\right)\left[p\left\{L_{V}(\lambda-\lambda z)-(1-z) L_{V}(\lambda)\right\}+z(1-p)-1\right]$
with

$$
\begin{equation*}
A(z)=L_{B}(\lambda-\lambda z) \text { and } p_{0}=\frac{1-\lambda \bar{X}}{1+p\left(\lambda \bar{V}+L_{V}(\lambda)-1\right)} \tag{6}
\end{equation*}
$$

