Another Look at the M/G/1 Queue

Analyzing the M/G/1 Queue Using the Method of
Supplementary Variables

The M/G/1 queue may aso be anaysed using the Method of
Supplementary Variables as described in [Kle75], [Takagi2]. This method
may also be used to study severa variations of the basic M/G/1 queue
[Takagi2]. The results obtained using this approach is the same as that
obtained through the Imbedded Markov Chain based analysis given earlier.
However, this method would provide a new insight in to the system and may
therefore lead to a better understanding of the overall operation of the M/G/1
queue.

Consider a M/G/1 queue which has N(t) users at time t. Note that N(t)
will not be a Markov Process by itself. This was the reason why the
Imbedded Markov Chain approach had to imbed the chain at the specia time
points, i.e. the departure instants of jobs, where the Markovian property
would hold. However, if we assume that Xq(t) is the service time aready
received by the user currently in service, then the joint process [N(t), Xo(t)]
would be a Continuous Time Markov Process. This process, including the
elapsed service time X(t) as the supplementary variable, helps in the
analysis of the queue using the method of supplementary variables. Note
that, by definition, we have Xy(t)=0 when N(t)=0, i.e. when the system is
empty. We assume that jobs arrive to the queue from a Poisson process with
average arrival ratel .

As usua, we define P(t)=P{N(t)=k} to be the probability of finding the
system in state k at time t. Let p=Py(t) as t® ¥ be the equilibrium state
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probability distribution for k=0,1,....., ¥. We dso define the joint
probability density fi(t, X) as

f, (t,X)dx = P{N(t) =k, x< X, (t) £ x + dx} )

Considering this at an arbitrary time instant (i.e. under equilibrium) ast® ¥,
we define

f (X)dx=P{N =k, x< X, £ x+dx} =Li@ng f (t, xpdx
fo(x)=0

(2)

Consider a job which requires a service of duration X with pdf b(x) and
cdf B(x). Let be(x) be the pdf of the service time X given that X>x, such that

b, (X)dx =P{x< X <x+dx|X >x} 3

Using the fact that the cdf B(x)=P{X£ x} and Baye'srule, we get

__b(¥
D 09= "5 0

Under equilibrium conditions, we can equate the flow from state O to state 1
and vice versa. This gives

I Py = Of: (), (X)dx ()

For the higher states, k=1,......,¥, we can similarly show that

f (x+Dx)dx =1 Dq1- b, (x)Dx] f,_, (x)dx _q v ©)
+(L- 1 DX)[1- b, (X)DX] f, (X)dx o

To see this, consider the definition of f(x) as given in (2) aong with the
definition of the elapsed service time (with pdf b(x)) and the arrival rate| of
new jobs to the system. Consider the event [ N(t+Dx)=k, Xo(t+Dx)=x+Dx}
which examines the system at time t+Dx to find k jobs in the system
(including the one being served) and that the job in service has already
obtained a service of duration x+Dx. This event can occur in two ways -



Another Look at the M/G/1 Queue 3

(a) at timet, the state was [ N(t)=k, Xo=X] and that there were no arrivals
(probability = 1-1 Dx) and no service completion (probability = 1-b.(x)Dx)
during the interval Dx.
or
(b) at time t, the state was [N(t)=k-1, Xo=X] and that there was an arriva
in the interval Dx but there was no service completion.
We also assume that t® ¥ . Thisis so that we may assume that the system has
reached equilibrium conditions provided the traffic r=1 E{X} is such that
r <1. Retaining only the Dx terms and dropping those with higher powers of
Dx (in anticipation of the fact that we would eventualy let Dx® 0), we get

f (x+Dx) =1 Dxf,_, (x) +[1- Dx(I +b,(Q))]f (X) k=l....¥ (7)
Taking the limitsas Dx® 0in (7) gives

df(k:l)((X) " [I * bC(X)]fk(X) =111 (%) =1,....¥ ()

In order to solve for the probability densities fy(x) using (8), we would
need appropriate boundary conditions. Using the earlier arguments for x=0,
we can write these as

¥

£,(0) =1 po + O ()b, () k=1
. ©)
i (0) = ()f kaa (X (X)X k=2,....¥

The corresponding normalisation condition may also be written as

a b =P +a Ofk (¥dx=1 (10)

¥ ¥ ¥
[o] [o]
k=0 k=1 o
The actua equilibrium solution px k=0,1,......¥ may be obtained by solving
the equations (5), (8) and (9) aong with the normalisation condition of (10).
A way to solve thisis given next.

We define F(z, x) as

F(Z,X)=§ fi ()2

k=1
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Multiplying (8) by Z for each k=1,.....,¥ and summing over k, we get

IFZX 1 s, (0]F (2% =1 2F (2, %)
ix
(11)
o &Y (1,00 b wF@x
¢

Note that for obtaining (11), we have used the fact that fo(X)=0 from (2).
Using (9) in a similar way, i.e. by multiplying the K" equation by Z* and
summing over k=1,......¥, we get

¥

F(2.0)=1 20, + & 2 (e (00D, (X
“too (12)

¥

or  ZF(z,0)=12(z- )p, + P (XF(z x)dx

It is easier to solve this by doing a change of variables defining g«(x) and
its generating function G(z,x) as follows

_ (¥ _
gk(x)_l- B0 k=1...%¥ 13)

9o(x)=0

6= 8 g (92 =F &N

e T 1- B(X) 4

where B(X) isthe cdf of the service time distribution corresponding to the pdf
b(x). Using (11), we then get

1G(z,x)
¢

=1 41- B(x)]G(z x) (15)

1G(z %)
x

[1- B(X)] - b()G(z,x) +[1- B[l +b. (9]G(z %)

+1 (1- 2G(z,x) =0

The solution to (15) may be written as



Another Look at the M/G/1 Queue 5
G(z x) =G(z,0)e”' &2 (16)

where the initial condition G(z,0) may be found using (12). For this, note
that F(z,0)=G(z,0) and f,(0)=gk(0) for k=0,1,.....,¥. Using thisin (12) gives

2G(20) =1 2(z- D) p, + (P(NG(z0)e”" * *dx

=lz(z- Yp, +G(z,0)Lg(l -12)

Note that Lg(s) is the Laplace Transform of the pdf b(x) of the service time.
Simplifying yields

_ 1z(1- 2)p,

G(Z,O) —m (17)
_ 12-2)py gk

G(z X)_—LB(I 12 Ze (18)

Therefore,

_ 12(1- 2)p,

F(z0= Le(l -12)-z 19)
_ 12(1- 2)p, ) 1 (1 2)x

F(z X)_—LB(I 12 Z[1 B(x)]e (20)

¥
We define F(2) = C\)C (z,x)dx which can then be obtained using (20) to be

x=0

F(g=E1 20 2Ry G- Lol - 12)0
EL0-19-2:8 10-29 5 2
o F(n=Roll el - 12)]

Le(l -12)-2z
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Note that, in order to obtain (21), we have used the result

¥
OB(Xe ' & *dx=

x=0

Le(l - 12)
| 1- 2)

which may be shown by direct integration.
Note that the state probabilities P(t) of the system at time t may be
obtained from the definition of fi(t,x) in (1), as

P()= O (t.¥)dx S1¥ 22)

x=0

The corresponding equilibrium state probabilities, px may be obtained from
(22) as

¥

Py =1im R () = Ofic (9 =1,.... ¥ (23)
0

where the equilibrium probability py of the system being empty will have to
be found by applying the normalisation condition of (10). It may aso be
noted that (23) may be used to observe that

k _ kaa¥\ 9_ ¥\ _
Pz =az¢ Ofc (¥dxT= (F(z x)dx=F(2)

¥
o
k=1 =0 J x=0

=

i QJO*K

1

Therefore, evaluating F(2) at z=1,we will get F(1)=1-p, corresponding to the
required normalisation condition. Using thisin (21) gives
_ _ o (1X)
1- po=F(2) = Potc1
or p,=(1-1X)=(-r) with r =1 X

=

(24)

The generating function P(2) of the system state at equilibrium will then
be given by
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i _ 6 Al- Lyl -12)
P(2)=p, +F(2) = pog]'+ Lg(l -12)-z
_(1-9(-r)Le( - 12)

Le(l -12)-2z

u
a
u (25)

Note that this is the same as the P-K Transform Equation result for the
M/G/1 queue obtained in (3.14) using the Imbedded Markov Chain
Approach.

The Elapsed Service Time Approach for the M/G/1 Queue

Consider once again the M/G/1 queue with infinite buffers. Following the
same approach as in Section 3.2, we consider once again the imbedded time
points at the departure instants of the jobs after service completion. These
correspond to the time instants marked with the shaded circlesin Fig. 1. As
in our earlier analysis of Section 3.2, we consider the Markov Chain of
system states at these imbedded points where the state of the system is
represented by the number left behind in the queue by a departing job.

r(t)

X2
X1

Xq Xz Xs X t

Figure 1. Imbedded Points at the Job Departure Instants of the M/G/1 Queue

In the equilibrium analysis of Section 3.2, we directly obtained the
generating function of the system states at these imbedded points (actually
just after the imbedded points). Since the number of jobs in this system can
change by at most +1, we then used Kleinrock's principle to claim that this
will also be the generating function of the system states at the arrival instants
of jobs. Findly, the PASTA property was used to claim that this generating
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function will aso be what will be observed at an arbitrary instant in the
queue.

We consider a dightly different analytical approach in this section. We
dtill obtain the state distribution at the imbedded points as before. Instead of
obtaining the generating function directly, we actually obtain a system of
equations that may be solved to obtain the state probabilities at the job
departure instants. (These may also be used to find the same generating
function as before.) Let g be the probability of there being i jobs in the
system as observed by a departing job. We use this and result from residual
life arguments to obtain the state probability p; of there being i jobs in the
system at an arbitrary time instant between successive imbedded points. This
would give us the expected result that p=gq;, i=0,1,....... ¥ . It may however be
noted that in this case, we get the desired results without invoking
Kleinrock's principle or PASTA.

We define ay as the probability of k arrivals in a service time. Note that
the service times are considered to be random variables with pdf b(t), cdf
B(t) and with the Laplace Transform of the pdf given by Lg(s). Let X be the
mean service time. Since the arrivals come from a Poisson process at rate | ,
we get that

(I x)"
!

. e "*b(x)dx k=01,......¥ (26)

¥
a, = 0
x=0

It may be noted that the z-transform of ay, defined as A(z), may be obtained
asin (3.1).
3
A2=ga.z"=Lg( - 12 (27)
k=0
Thiswill be the generating function of the number of job arrivalsin a service

time. We aso define Ay, k=0,1,....... ¥ as the probability of there being k or
more arrivals in a service time defined as

A, =1

g (28)
A=A a k=01......¥
k

We also have that

a,=A - A, k=01,.....¥ (29)
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Focussing on the imbedded points under equilibrium conditions, let g;
i,j=01,.......... , ¥ be the transition probability of the system going from state
i to dstate j from one imbedded point to the next. These transition
probabilities will be given by

Qi =ay j=0

30
:ak—j+l ] :1,2, ....... ,¥ ( )

Using these, we can obtain the equilibrium state probabilities at the
departure instants by solving

¥
Ak :é a; 9. k=01,........ ¥ (31)

j=0
along with the normalisation condition

¥
a ac =1 (32)
k=

0

Note that, using (30), we can also write (31) as

do =0 o T Gha, k=0
0, =Qpa,; t0,a, tQQ, k=1
............. (33)

k
o)
Ok = o +qk+1a0 +a q,—ak_j+1 k:l, ...... ,¥

=1

Multiplying the K" equation in (33) by 2 and summing all the left-hand sides
and the right-hand sides from k=0 to k=¥, we get

Q(2) =9,A(2) + 0,A(2) +0,7A(2) + Q3ZZA(Z) to
= 9,42+ 22[Q(2) - q]

where Q(2) is the generating function of the number left behind in the system
by a departing job under equilibrium conditions. Rearranging terms gives us
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_ G- DAQ)
Q@)= (34)

Using the property that Q(1)=1 (evauated in the same way as done for P(1)
in Section 3.2) will give us

0o =1- 1 for r =I X (35)

Using g as obtained from (35), we can evaluate g, from (33) as

1

Ch:_[%(l' ao)] k=1
ag

Ok :_Qk-l' a qjak-j - qoak.ll:J k:2, ...... ,¥
208 =1 A

Having obtained the state probabilities at the imbedded points, we can
now use these results to get the state probabilities at an arbitrary instant of
time. For this, we first note that the mean time interval D between successive
imbedded points will be given by

1 _ _
D:q0(|_+ X)+(L- go)X
1 (37
:)?+q0|_

The probability py of examining the system at an arbitrary time instant and
finding it empty will be the fraction of time the system staysidle in the time
interval between successive imbedded points. Thisimplies that

P = = (38)

Substituting for go using (35), gives us the expected result that

Po=0Qo =1-r (39
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To prove the similar results, i.e. pi=0gx for k=1,2,....... ¥, we consider the
event of examining the system at an arbitrary time instant and finding k jobs
in the system. Note that since we are not considering k=0, this arbitrary
instant of time will not be one when the system is empty, i.e. in the time
duration from the last departure which left the system empty to an instant
after the next arrival, which starts the server once again.) Two cases may
arise where the arbitrary time instant chosen fallsin a service time, i.e. when
the server isbusy. These are

(a) The time instant chosen falls in a service time following an imbedded
X

point where the queue was empty. The probability of this will be % .
X +q, T
Let x be the time interval between the arrival of the first customer following
the last imbedded point (where the system became empty) and the time
instant chosen. The system will have k jobs at the chosen time instant if there
arek job arrivals in thistime interval where the arrivals come from a Poisson
process. The pdf of the interval x itself may be obtained from residua life
1- B(X)

arguments to be X

(b) The time instant chosen fals in a service time following an imbedded
point where the queue was not empty. This implies that the system state at
that earlier imbedded point may be j where | may range from 1 to k. The
probability of choosing an arbitrary time instant within a service time and

X
with a particular j3 1, will be q’—l . Asin (a), let x be the time interval
X+, I
between the last imbedded point and the time instant chosen. If there were |
jobs in the system at the last imbedded point, we need (k-j) job arrivals in

this time interval where the arrivals come from a Poisson process; thisis so
that the system isin state k at the chosen instant. The pdf of the interval x

1- B(X)

itself may be obtained from residual life arguments to be X asin (a).

Using (a) and (b), we get
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: -1
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é)?_‘_qorzo(k-l). X
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k (? Y g‘ K- i

X - -
0 1%5(' X)_Ie"xl By k=1...
IFEX +q Ltk ) X

o™>O0

°| g

To simplify (40) further, we need the result

=da, = 2 A% e " *b(x)dx
A=am=a omjme bl
v k=12,......¥
NG Ie"x[l- B(x)] dx
Ok - 1y
3 _
and g A =IX=r
k=1
Applying these to (40) gives
@ g, & a6 U
Px = q_i :?A‘k +é : iAk-jﬂl}
o *T1 o8 iz18Uo g G
é k o8 O u
= DA+ a g—‘zAk i k=12, ¥
e =18% g g
e . fao U
:qo@a‘k +é J iAk-jﬂl}
g j=18%g g
We can show that
e k 5 u
e + 4 Bioa La=d k=1,2,... ¥

(40)

(41)

(42)

(43)

(44)
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For showing (44), subtract gw: from g¢ using the relevant expression for
both from (33). Manipulation of the resultant expression would lead to (44).

Substituting (44) in (43) gives us the desired result that py=0« also for
k=1,2,......%¥. Note that this result has been proved without using PASTA
and Kleinrock's principle.



