Analysisof a M/G/1/K Queue with Vacations
Systems with Exhaustive Service, Multiple or Sngle Vacations

We consider here the finite capacity M/G/1/K queue with the variation
that the server goes for vacations when it is idle. This service model is
referred to as one providing exhaustive service, as the server cannot go for a
vacation until al the jobs presently in the system have been served. Thisis
the service model being considered here as this leads to a simple analytical
model. Note that it is also possible to have a gated service model where the
server only serves those customers that it finds in the system when it first
starts service following its vacation. It then leaves for vacation again.

The vacation model itself may be of different types. In Section 4.1, we
had considered a multiple vacation model. Here a server, on returning from a
vacation, goes for another vacation if it finds the system still empty. In this
case, the server resumes normal service if it finds one or more jobs waiting
when it returns from a vacation. Note that multiple vacations, one after the
other, will be possible in this model. An aternative vacation model,
discussed in Section 4.2, assumes that the server goes for only one vacation
when the queue becomes empty. Even if the queue is empty when it returns
from the vacation, it stays at the queue waiting for a job to arrive. (In the
multiple vacation model, it would have gone for another vacation in this
case.) Other variations of this are also possible such as one where the server
can go on multiple vacations and resumes service only when it finds L or
more jobs waiting when it returns from a vacation. In the subsequent
analysis, we first consider the multiple vacation model and then look at the
case when we alow only a single vacation whenever the departure leaves
behind an empty system.
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Multiple Vacation Model

Following our usual notation, we assume that the arrivals come from a
Poisson process with rate | and that the service times are generally
distributed with pdf b(t), cdf B(t) and has LB(S) as the Laplace Transform of
the pdf. Let the mean service time be X =mi*. Asin Sections 4.1 and 4.2, we
assume that a vacation interval has pdf f\(t), cdf Fy(t) and has L\(s) as the
L.T. of the pdf. Let the mean vacation interval be V . Asin Sections 4.1 and
4.2, we dso assume that the service times and vacation times are i.i.d.
random variables which are also independent of each other.

For this M/G/U/K queue with exhaustive service and multiple vacations,
we consider the analysis using an imbedded Markov Chain approach. For
this, the imbedded points are chosen to be at the time instants when either a
job completes service or a vacation has ended. These have been illustrated in
Fig. 1 using atypical plot of the residual service and vacation times with the
imbedded time points marked with shaded circles.

r(t): Residual Time for the Currently
Ongoing Service or Vacation Time

X;: i service time

r| V" vacation time
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Figure 1. Imbedded Time Points for the M/G/1/K Queue with Multiple Vacations and
Exhaustive Service

Tlmet

The system states at the imbedded points are represented by both the
number in the system (waiting and in-service) immediately after the selected
time instant and the nature of the imbedded point (i.e. whether it is a service
completion or a vacation completion). The system state at the i™ imbedded
point is represented by (n;, f;) where

ni = number of jobsin the system just after the i imbedded point
and f; =0 if thei™ point was avacation completion
=1 if thei™ point was a service completion
Considering the system in equilibrium, let g« k=0,1,....... K be the
probability of (k,0) and ry, k=0,1,.....,(K-1) be the probahility of (k,1). (Note
that just after a service completion, the system state cannot be K which is the
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reason why r is not defined.) Let f; j=0,1,......¥ be the probability of their
being j jobsin the system just after a vacation interval. Thiswill be given by

= D\(' ;!)"e.n £, ()t i=0,1,.......¥ D)

f

Let a; j=0,1,.....¥ be smilarly defined as the probability of j arrivals in a
service time. Thiswill be given by

AL _
aj_ojTe b(t)dt j=0,1,.....¥ )

Considering the system state just after the imbedded points, the following
transition equations may then be written.

O = (Ao *+ o) i k=0,1,.......,(K-1) ©)
3
dk =(% *ro)a f« =K 4)
k=K
Igl
ne=a (@ +ra ., =0, (K-2) (5)
j=1
5 ;
n1=0c *a (@ +r;) aax k=K-1 (6)
j=1 k=K- j

Summing the probabilities of all possible states, we will also get

& 51
aarar =1 (7)

k=0 =0

We need to solve for g k=0,1,....... K and ry, k=0,1,.....,(K-1) using (3)-
(7) dong with the appropriately calculated values of f; and a;, j=0,1,.....¥ .
This is most conveniently done by defining an intermediate variable by,
k=0,1,.....,(K-1) as



b, = k=0,1,........(K-1) ®)
Qo + 1o

We can then get by, k=0,1,.....,(K-1) using the following recursion
b, =1
&
b,- fi- A bjau 9)

By, = 1= K=0,....,(K - 2
k4l a ( )

Substituting (4) into (7) and smplifying gives

6 ¥ K1y

[o] o]

(@ +r)ea fi t1+a byeg=1
&=k k=t U

and using bo=1

1
Qo +1p =~ I (10)

K
fe +a b

$
K k=0

D (D
Do

@
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Using the value of (gotro) obtained from (10), we can find g« k=0,1,....... K
using (3) and (4). Using these values of g« and the values of by obtained
earlier, we can now find ry, k=0,1,....... ,Kusng

e =(Go *+ )by - Oy k=0,1,.......,(K-1) (11)

The probabilities g« k=0,1,....... K and ry, k=0,1,.....,(K-1) may now be
used to get some of the performance parameters of the system. We can see
that if the state is either (0,0) or (0,1) at any imbedded point, then the time to
the next imbedded point would correspond to a vacation. The probability of
this would be (go+ro) which would then also be the probability that a (single)
vacation completion would follow an arbitrarily selected imbedded point
(which could be either a vacation completion or a service completion). It
would then aso follow that (1-go-ro) would be the probability that a job
service completion imbedded point would follow an arbitrarily selected
imbedded point. It may also be noted that by summing (3) and (4) for all
k=0,1,..,K we get
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K
Qo t1p = é oD (12)

k=0

Let r . be defined as the carried load, i.e. the probability that the server is
busy at an arbitrary time. Note that if we look at al the intervals between
successive imbedded points over a long time duration (say T), then we can
easily conclude that

lim é service timesinT
r =
° T® ¥ § vacation timesinT + § service timesinT (13)
— (1'_% - 1) X _
(QO + ro)V +(1' Qo - I‘O)X
where the offered load r is defined as usual to be
r=IX (14)
Using (13) and (14), the blocking probability Ps may be found using
r.=r@- pRy)
to get
P =1 (15)

Since afraction Pg of the arrivals will be blocked and will not be allowed to
enter the queue, the throughput (rate) g of the system will be given by

g=1(@1-F) (16)
Another useful quantity that may be obtained from the above analysis is
the mean time D between successive imbedded points of the above analysis

when the system is in equilibrium. It follows from the definitions that this
will be

D = (g +r0)\7+(1' Qo - ro))? (17)
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It follows from (13) that therefore

:(1' r_C)D:]_- rcD (18)

X

do * 1o

It should be noted that the analysis given above leads only to the queue
size distributions at the imbedded points corresponding to either a service
completion or a vacation completion. (Actually, these are the distributions
just after the imbedded point.) To analyse the system more completely, we
need to actually find the corresponding distributions at an arbitrary instant of
time as then we can use that to find the mean queue length and other related
parameters at an arbitrary instant. Several methods for doing this are given in
[Takagi2]. One of these methods is given next.

Consider the probabilities Qy, k=0,1,......K and Ry, k=0,....... ,(K-1) defined
at arbitrary time instants as follows (These correspond to the probabilities g«
and ry defined earlier at the imbedded time points.)

Qk = P{kjobsin system, server currently in avacation} k=0,1,....,.K
R« = P{kjobsin system, server currently serving ajob} k=0.....,(K-1)

We define F; as the probability that j or more jobs arrive to the system
during a vacation time. This may be evaluated using (1) to be

3 s (1t .,
F=a f=a O%e' f, (t)dt

iz i=it=0 (19)
- o, o
qio j- 1! v

where F\(t) is the cdf corresponding to the pdf f\(t) of a vacation interval. It
may also be noted from the definitions that

¥ ¥ ¥
é F = é é f, = é if; = E{number of arrivalsin a vacation interval}
j=1 j=li=j i=1

Therefore

g F =V (20)
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We similarly define A; as the probability that j or more jobs arrive during
a service duration. Using a; of (2) as the probability of j job arrivals in a
service time, we get the following results which are similar to those given in
(19) and (20).

A =5a, =§ N .t!) ()t
;_E ) i=j t=0 (1)
(It .
=05 - B ot
5 A =IX=r (22)

.ﬂ

where r is the load offered to the system (which results in the carried load
le e<r).

In order to find Q, consider an arbitrary time instant that falls within a
vacation such that there are k arrivals in the time interval (say x) between the
start of that vacation interval and the time instant selected. Note that the
probability of selecting a vacation interval would be (1-r ;). The probability
of k arrivals in the time interval x would be given by the Poisson distribution,

(I :) . The pdf of the time interval x itself would be given by
- R (¥
v

residual life type arguments to be . Using these, we can write

= (1- rc)‘(lx) x e \F/(X)d k=0,....(K-1)

(IX) le F(X)dX k=K
ki Y

=(1- rc)a

kKo

Using (19), we can simplify thisto get



Qk - I \7 Fk+l k:0, ..... ,(K - 1)
Ly (24)
=) 2 F k=K
Y k=K+1

Further ssimplification of (24) is possible by noting that by using (3) and (4),
we can write

Qo=

a; = (0o + o) Fe k=1.....K (25)
k

Substituting thisin (24) and using (18) and (20) leads to the final expression
for Qc as

1
| D j

Qo=

Q = q, k=0,....,(K - 1)

+1

1 & .
=1- rc'I_a qu k=K

1
=

(26)

To find Ry, we similarly consider an arbitrary time instant that falls within
a sarvice time such that there are k arrivals in the time interval (say X)
between the start of that service interval and the selected time instant. Note
that the probability of selecting a service interval would be r.. Given that
the service interval will have to start with a non-empty queue, the probability

4T
of it starting with j jobs in the system will be 1q’—’ for j=1,....,(K-1)
“Uo-To
1q—K for j=K. The probability of m arrivals coming in the
“Uo-To

and will be

m
interval x will be %e"x. The pdf of the time interval x itself would be

given by residual life type argumentsto be 1- ;(X) . Using these, we get




Analysis of a M/G/I/K Queue with Vacations 9

kg +r; 6 (1x)~] -
Ro=r. el S0 ol By oy k-

12181 Qo - To gy (k- J)! X
® q¢ O

=re x (27)
gl' Go-Tog
Klgpg +r. 0 & ¥ Kk }

VLAY VPN T
181" Go- Togex-jo K X

j=1

r &eq, +tr. 0o
S e K=Lowo(K - 1)
N i2gt-dQ-Tog (29)
0 leeq; +r; 0 4
=rc§e T - Lo k=K
1-0o-Tog I 2&l- do- To e ju
We can further show using (2)-(6) that
k
e = (o * 10)Fies + @ (A +1))A 11y k=1...(K-1) (29

This is most conveniently done by first showing that (29) holds for k=1 and
then using mathematical induction to prove it for a genera vaue of k,
assuming that it holds for k-1.

Now using (29) and (12) along with the normalisation condition of (7), we
can prove that

-1

@+r) & Ac=aig - @ r)d-go-r)- rog (30)

j=1 k=K- j+1 j=1

Qo

Simplifying (28) further using (29) and (30) and using (18) and (22), we get
the final expression for R as
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& 0
Rk——g -aq: k=1.....,(K- 1)
IDE" S JéxK (31)
_ro(r- 1) 19 _
o ID.a I k=K

1=

Using the vlues of g;j=0.....K and r; j=0,....,(K-1) (probabilities just after the
imbedded Markov points) which were obtained earlier, we can now use (26)
and (31) to calculate the probabilities Q; j=0....K and R j=1,.....K a any
arbitrarily chose time instant.

For a system in equilibrium, we define p; j=0,1,....,K as the probability of
the system being in state j at an arbitrarily chosen time instant. Using the
values of Q and R; obtained above in (26) and (31), we can calculate the
state probabilities p; j=0,1,....,.K as

Po =Qo 1=0
=Q, +R, _Ir_D =L (K - 1) (32)
=Qx + Ry _(I'- c) j=K

These probabilities may now be used to find the usual queueing parameters
as defined in Chapter 1. For example, the mean number N in the system and
the mean time W spent in the system by a job which is not blocked will be
given by

1 %! & -r_ 0
:ﬁé ir; +K cx (33)
j=1 %]
N
= = 34
I (1- Py) (34)

It is also evident that the probability that the server is busy or idle (i.e. on
avacation) will be given by

P{server isbusy}:éK Ri=r.=r@- px) (35)

k=1
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K
P{server ison vacation}=g Q, =1- r_ =1- r (1- py) (36)

k=0

Single Vacation Model

In the single vacation model, the server still goes for vacation whenever
the system becomes empty. However, unlike the multiple vacation case
described earlier, once it comes back from this vacation, it does not go for
another vacation even if it finds the queue empty on its return. It goes for its
next vacation only after the system becomes empty once again following a
"server busy" interval. If this model is being considered, the situation
depicted in Fig. 1 will change and look as shown in Fig. 2.

4 r(t): Residual Time for the Currently

Ongoing Service or Vacation Time
X;: i service time
r)] V" vacation time

X4
NN
O
X1 Vi T X X

3 Timet

Figure 2. Imbedded Time Points for the M/G/1/K queue with Single Vacation and Exhaustive
Service

The single vacation model with exhaustive service may be analysed in
essentially the same fashion as the multiple vacation model considered
earlier. We follow an imbedded Markov Chain approach with the imbedded
points selected as the points corresponding to the departure instants of jobs
that have finished service or the end of completed vacations. These
imbedded points are the ones illustrated in Fig. 2 using shaded circles.

The system states at the imbedded points are represented by both the
number in the system (waiting and in-service) immediately after the selected
time instant and the nature of the imbedded point (i.e. whether it corresponds
to a service completion or a vacation completion). We can write a Markov
Chain for the system states, denoted in this fashion, between the imbedded
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points. The system state at the i imbedded point is represented by (n;, f))
where
ni = number of jobsin the system just after the i imbedded point
and f; =0 if thei™ point was avacation completion
=1 if thei™ point was a service completion

Considering the system in equilibrium, let g« k=01,....... K be the
probability of (k,0) and ry, k=0,1,.....,(K-1) be the probahility of (k,1). These
definitions are the same as the ones used for the multiple vacation model.
The difference for the single vacation model is the situation when the
vacation completes but the system is still empty. In that case, the next
imbedded point is the one corresponding to the departure of the job that is
the first to arrive after this vacation completion event.

We use here the same notation for characterising the Poisson arrival
process (rate | ), the service time distribution (b(t), B(t), Lg(t) and X) and
the vacation time distribution (f\(t), Fu(t), Lt) and V) as used earlier for
the multiple vacation model. Let f; and a; be as defined in (1) and (2),
respectively.

Considering the system states just after the embedded points, the
following equations may be written relating the transitions from one
imbedded point to the next.

O = fy k=0,1,....... (K-1) (37)
3
dk =foa f« =K (38)
k=K
le
Ne=dedy ta (d; +r)ay ju =0,........ (K-2) (39
j=1
¥ 5 ¥
ni=0o dacg+a (g, +r;)) aax +d k=K-1 (40)
k=K-1 j=1 k=K- j

Summing al the state probabilities at the imbedded points, we will also get

1

r = (41)

Qo7

&
adgt

k=0 0
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Solving (37)-(41), we can obtain the equilibrium probabilities for g,
k=0,1,....... K and ry, k=0,1,.....,(K-1) for this M/G/1/K queue with single
vacations and exhaustive service. Summing (37) over k=0,1,.....,(K-1) along
with (38), we obtain that

K
lh=a (42)

This would correspond to the probability that a service completion instant
leaves the queue empty, i.e. it is the start of a vacation. The time interval
between successive imbedded points would be one of the following three
possibilities.

(a) service time (with mean X ) with probability 1-ro-go
(b) vacation time (with mean V') with probability ro

(c) servicetime and inter-arrival time (with mean X +1 ™) with probability
Qo-

Defining D as before to be the mean time interval between successive
imbedded points at equilibrium, we get

D=(@-r,- QO))?+r0\7+QO()?+1)
. ! 43)
=(1- r0))?""‘0\7"'CIOI_

Considering the mean time interval D between successive imbedded
points, we can see that the interval actual corresponds to a job being served
only with probability (1-ro). Therefore, the carried load r . will be given by

_(@-1)X

c D (44)

corresponding to an offered load of r =1 X . The blocking probability Pg
can then be found as
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1-r,
| D

P, =1- rr—0=1- (45)

It should be noted that the state probabilities g, k=0,1,....... K and ry,
k=0,1,.....,(K-1) are only valid for the system a the imbedded points
corresponding to either a service completion or a vacation completion.
However, we can use them aong with some additiona analysis along the
same lines as before to get the probabilities p; i=0,1,........ K for i jobsin the
system (waiting and in service) at an arbitrary instant of time.

Considering the probability of the number in the system at an arbitrary
instant of time, we can find the limiting values p, and px by a smple
argument. Considering the interval between successive imbedded points, the
probability po will be given by the ratio of the mean time spent idle in the
mean interval D. Thisgives

oV +d, Il
Po=—"F (46)
Using (43) and (44), this may be smplified to get
P, =1-r, (47)

which would be the expected result for the fraction of time the server will be
idle in the system. Similarly, a job will be blocked and denied entry in the
gueue only when the system isfull, i.e. in state K. Therefore,

r 1-r
=P, =1- —C:]_- 0
P =Fs r | D

(48)

Consider the probabilities Qy, k=0,1,......K and Ry, k=0,....... ,(K-1) defined
at arbitrary time instants as follows (These correspond to the probabilities g«
and ry defined earlier at the imbedded time points.)

Qk = P{kjobsin system, server currently in avacation} k=0,1,.....K
R« =P{kjobsin system, server not on vacation} k=0,....,(K-1)

Note that when the server is not on vacation, it would either be busy serving
a job or it would be waiting idle for the first job to arrive following a
vacation which was completed without any job arrival. This is really the
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difference between the definition of R here and that given for the multiple
vacation model earlier.

In order to find Qy, consider an arbitrary time instant that falls within a
vacation interval such that there are k arrivals in the time interva (say X)
between the start of that vacation interval and the selected time instant. The

probability of falling in a vacation interval would be % The probability

of k arrivals in the time interval x would be given by the Poisson distribution,
k

ie %e"x. The pdf of the time interval x itself would be given by

residual life type arguments to be %l’(x) . Using these, we can write

¥ k -
karov N(RINPRFER ¢ kK=0,.,(K - 1)
D 0 k!

T (49)
IV A 005 1RO
D k! \Y,

=~
I
A

o k=K

We define F; as before to be the probability that j or more jobs arrive to the
system in avacation interval. Using (19) and (20), we can then simplify (49)
to get

karolF% k=0,... (K-1

. N 50

_ T g _ & 2 u _ (0)
‘_aFj‘_(?IV'aFjLJ k=K

I'D j=K+1 I'D e =t @
To simplify this further, we note from (37) and (38), that
S 1 &
Fea=a f;=— a qa; k=0,.., (K-1) (51)

j=k+1 Fo j=k+1

and that
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K8 1%
aad=—a i (52)

1 &
Q=75 a a k=0, (K-1)
S (53)
rovV 1 o .
= - — . k=K
D IDJa:qu’

To find R,, we similarly consider an arbitrary time instant that falls
within atime interval where the server is not on a vacation. Note that finding
Ry is particularly straightforward as this will correspond to the fraction of
time, within the interval between successive imbedded points, when the
server isidle although it is not on a vacation. Thiswill therefore be

q 1
_ 0 9
Ry = T (54)

Note that we expect pp to be equal to Qo+ R,. This may be verified using
(54), (53) for k=0 and (42).

The procedure for finding Ry for the other values of k, i.e. k=1,.....K is
similar to our earlier approach and lead to the result

1 € & u
R =——&- aqu k=0,....,(K - 1)
IDg" 5 g
(55)
19, 1€ & U
=r.gl- —z+—é&+aq i9;0 k=K
"g 1Dg" = g

The probability py of finding k jobs in the system at an arbitrary instant of
time for k=1,.....,K may then be found as

P =Q +R, k=1.....K (56)

Using this and (54), we get our fina result for the state probability at an
arbitrary instant as
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= k=0
Px D
M
=— k=1....... K-1 57
D 1 (57)
:1-r_c k=K

The mean number in the system N at an arbitrary instant of time may be
found using (57) to be

1 %! r.
e — kr. + - —c
IDa: “ ? r

k=1

(58)

Q-I-I o:

The mean time W spent in system by a job which actually does enter the
system (i.e. is not blocked and denied entry) may be obtained by applying
Little's result to (58) to get

N

“1a- my) (9

We also get that

AV
P{server is on vacation} = F

(1' ro))? —

P{server is busy serving ajob}= o e

P{server is not on vacation but is idIe}:Iq—g

o

P{server isidle ——+
{ }= po D D



