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Analysis of a M/G/1/K Queue with Vacations
Systems with Exhaustive Service, Multiple or Single Vacations

We consider here the finite capacity M/G/1/K queue with the variation
that the server goes for vacations when it is idle. This service model is
referred to as one providing exhaustive service, as the server cannot go for a
vacation until all the jobs presently in the system have been served. This is
the service model being considered here as this leads to a simple analytical
model. Note that it is also possible to have a gated service model where the
server only serves those customers that it finds in the system when it first
starts service following its vacation. It then leaves for vacation again.

The vacation model itself may be of different types. In Section 4.1, we
had considered a multiple vacation model. Here a server, on returning from a
vacation, goes for another vacation if it finds the system still empty. In this
case, the server resumes normal service if it finds one or more jobs waiting
when it returns from a vacation. Note that multiple vacations, one after the
other, will be possible in this model. An alternative vacation model,
discussed in Section 4.2, assumes that the server goes for only one vacation
when the queue becomes empty. Even if the queue is empty when it returns
from the vacation, it stays at the queue waiting for a job to arrive. (In the
multiple vacation model, it would have gone for another vacation in this
case.) Other variations of this are also possible such as one where the server
can go on multiple vacations and resumes service only when it finds L or
more jobs waiting when it returns from a vacation. In the subsequent
analysis, we first consider the multiple vacation model and then look at the
case when we allow only a single vacation whenever the departure leaves
behind an empty system.
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Multiple Vacation Model

Following our usual notation, we assume that the arrivals come from a
Poisson process with rate λ and that the service times are generally
distributed with pdf b(t), cdf B(t) and has LB(s) as the Laplace Transform of
the pdf. Let the mean service time be X =µ-1. As in Sections 4.1 and 4.2, we
assume that a vacation interval has pdf fV(t), cdf FV(t) and has LV(s) as the
L.T. of the pdf. Let the mean vacation interval be V . As in Sections 4.1 and
4.2, we also assume that the service times and vacation times are i.i.d.
random variables which are also independent of each other.

For this M/G/1/K queue with exhaustive service and multiple vacations,
we consider the analysis using an imbedded Markov Chain approach. For
this, the imbedded points are chosen to be at the time instants when either a
job completes service or a vacation has ended. These have been illustrated in
Fig. 1 using a typical plot of the residual service and vacation times with the
imbedded time points marked with shaded circles.
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Figure 1. Imbedded Time Points for the M/G/1/K Queue with Multiple Vacations and
Exhaustive Service

The system states at the imbedded points are represented by both the
number in the system (waiting and in-service) immediately after the selected
time instant and the nature of the imbedded point (i.e. whether it is a service
completion or a vacation completion). The system state at the ith imbedded
point is represented by (ni, φi) where

ni
 = number of jobs in the system just after the ith imbedded point

and φi = 0 if the ith point was a vacation completion
            = 1 if the ith point was a service completion
Considering the system in equilibrium, let qk, k=0,1,.......,K be the
probability of (k,0) and rk, k=0,1,.....,(K-1) be the probability of (k,1). (Note
that just after a service completion, the system state cannot be K which is the
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reason why rK is not defined.) Let fj  j=0,1,......∞ be the probability of their
being j jobs in the system just after a vacation interval. This will be given by
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Let αj  j=0,1,......∞ be similarly defined as the probability of j arrivals in a
service time. This will be given by
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Considering the system state just after the imbedded points, the following
transition equations may then be written.
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Summing the probabilities of all possible states, we will also get
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We need to solve for qk k=0,1,.......,K and rk, k=0,1,.....,(K-1) using (3)-
(7) along with the appropriately calculated values of fj and αj, j=0,1,....,∞ .
This is most conveniently done by defining an intermediate variable βk,
k=0,1,.....,(K-1) as
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We can then get βk, k=0,1,.....,(K-1) using the following recursion
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Substituting (4) into (7) and simplifying gives
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Using the value of (q0+r0) obtained from (10), we can find qk k=0,1,.......,K
using (3) and (4). Using these values of qk and the values of βk obtained
earlier, we can now find rk, k=0,1,.......,K using

kkk qrqr −+= β)( 00                               k=0,1,.......,(K-1) (11)

The probabilities qk k=0,1,.......,K and rk, k=0,1,.....,(K-1) may now be
used to get some of the performance parameters of the system. We can see
that if the state is either (0,0) or (0,1) at any imbedded point, then the time to
the next imbedded point would correspond to a vacation. The probability of
this would be (q0+r0) which would then also be the probability that a (single)
vacation completion would follow an arbitrarily selected imbedded point
(which could be either a vacation completion or a service completion). It
would then also follow that (1-q0-r0) would be the probability that a job
service completion imbedded point would follow an arbitrarily selected
imbedded point. It may also be noted that by summing (3) and (4) for all
k=0,1,..,K we get
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Let ρc be defined as the carried load, i.e. the probability that the server is
busy at an arbitrary time. Note that if we look at all the intervals between
successive imbedded points over a long time duration (say T), then we can
easily conclude that
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where the offered load ρ is defined as usual to be

Xλρ = (14)

Using (13) and (14), the blocking probability PB may be found using
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Since a fraction PB of the arrivals will be blocked and will not be allowed to
enter the queue, the throughput (rate) γ of the system will be given by

)1( BP−= λγ (16)

Another useful quantity that may be obtained from the above analysis is
the mean time D between successive imbedded points of the above analysis
when the system is in equilibrium. It follows from the definitions that this
will be
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It follows from (13) that therefore
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It should be noted that the analysis given above leads only to the queue
size distributions at the imbedded points corresponding to either a service
completion or a vacation completion. (Actually, these are the distributions
just after the imbedded point.) To analyse the system more completely, we
need to actually find the corresponding distributions at an arbitrary instant of
time as then we can use that to find the mean queue length and other related
parameters at an arbitrary instant. Several methods for doing this are given in
[Takagi2]. One of these methods is given next.

Consider the probabilities Qk, k=0,1,.....,K and Rk, k=0,.......,(K-1) defined
at arbitrary time instants as follows (These correspond to the probabilities qk

and rk defined earlier at the imbedded time points.)

Qk = P{k jobs in system, server currently in a vacation}  k=0,1,....,K
Rk  = P{k jobs in system, server currently serving a job}  k=0,....,(K-1)

We define Fj  as the probability that j or more jobs arrive to the system
during a vacation time. This may be evaluated using (1) to be
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where FV(t) is the cdf corresponding to the pdf fV(t) of a vacation interval. It
may also be noted from the definitions that
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We similarly define Aj as the probability that j or more jobs arrive during
a service duration. Using αj of (2) as the probability of j job arrivals in a
service time, we get the following results which are similar to those given in
(19) and (20).
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where ρ is the load offered to the system (which results in the carried load
ρc, ρc <ρ).

      In order to find Qk, consider an arbitrary time instant that falls within a
vacation such that there are k arrivals in the time interval (say x) between the
start of that vacation interval and the time instant selected. Note that the
probability of selecting a vacation interval would be (1-ρc). The probability
of k arrivals in the time interval x would be given by the Poisson distribution,
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Using (19), we can simplify this to get
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Further simplification of (24) is possible by noting that by using (3) and (4),
we can write
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Substituting this in (24) and using (18) and (20) leads to the final expression
for Qk as
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     To find Rk, we similarly consider an arbitrary time instant that falls within
a service time such that there are k arrivals in the time interval (say x)
between the start of that service interval and the selected time instant. Note
that the probability of selecting a service interval would be ρc.  Given that
the service interval will have to start with a non-empty queue, the probability

of it starting with j jobs in the system will be 
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Using (21) and Xλρ = , we can simplify this to obtain
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We can further show using (2)-(6) that
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This is most conveniently done by first showing that (29) holds for k=1 and
then using mathematical induction to prove it for a general value of k,
assuming that it holds for k-1.

Now using (29) and (12) along with the normalisation condition of (7), we
can prove that
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Simplifying (28) further using (29) and (30) and using (18) and (22), we get
the final expression for Rk as
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Using the vlues of qj j=0,...,K and rj j=0,....,(K-1) (probabilities just after the
imbedded Markov points) which were obtained earlier, we can now use (26)
and (31) to calculate the probabilities Qj j=0,...,K and Rj j=1,....,K at any
arbitrarily chose time instant.

For a system in equilibrium, we define pj  j=0,1,....,K as the probability of
the system being in state j at an arbitrarily chosen time instant. Using the
values of Qj and Rj obtained above in (26) and (31), we can calculate the
state probabilities pj  j=0,1,....,K as
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These probabilities may now be used to find the usual queueing parameters
as defined in Chapter 1. For example, the mean number N in the system and
the mean time W spent in the system by a job which is not blocked will be
given by
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It is also evident that the probability that the server is busy or idle (i.e. on
a vacation) will be given by
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Single Vacation Model

In the single vacation model, the server still goes for vacation whenever
the system becomes empty. However, unlike the multiple vacation case
described earlier, once it comes back from this vacation, it does not go for
another vacation even if it finds the queue empty on its return. It goes for its
next vacation only after the system becomes empty once again following a
"server busy" interval. If this model is being considered, the situation
depicted in Fig. 1 will change and look as shown in Fig. 2.

Time τ

r(t)

 r(t): Residual Time for the Currently
       Ongoing  Service or Vacation Time
Xi: i

th service time
Vj: j

th vacation time
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Figure 2. Imbedded Time Points for the M/G/1/K queue with Single Vacation and Exhaustive
Service

The single vacation model with exhaustive service may be analysed in
essentially the same fashion as the multiple vacation model considered
earlier. We follow an imbedded Markov Chain approach with the imbedded
points selected as the points corresponding to the departure instants of jobs
that have finished service or the end of completed vacations. These
imbedded points are the ones illustrated in Fig. 2 using shaded circles.

The system states at the imbedded points are represented by both the
number in the system (waiting and in-service) immediately after the selected
time instant and the nature of the imbedded point (i.e. whether it corresponds
to a service completion or a vacation completion). We can write a Markov
Chain for the system states, denoted in this fashion, between the imbedded
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points. The system state at the ith imbedded point is represented by (ni, φi)
where

ni
 = number of jobs in the system just after the ith imbedded point

and φi = 0 if the ith point was a vacation completion
            = 1 if the ith point was a service completion
Considering the system in equilibrium, let qk, k=0,1,.......,K be the
probability of (k,0) and rk, k=0,1,.....,(K-1) be the probability of (k,1). These
definitions are the same as the ones used for the multiple vacation model.
The difference for the single vacation model is the situation when the
vacation completes but the system is still empty. In that case, the next
imbedded point is the one corresponding to the departure of the job that is
the first to arrive after this vacation completion event.

We use here the same notation for characterising the Poisson arrival
process (rate λ), the service time distribution (b(t), B(t), LB(t) and X ) and
the vacation time distribution (fV(t), FV(t), LV(t) and )V  as used earlier for
the multiple vacation model. Let fj and αj be as defined in (1) and (2),
respectively.

Considering the system states just after the embedded points, the
following equations may be written relating the transitions from one
imbedded point to the next.
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Summing all the state probabilities at the imbedded points, we will also get
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Solving (37)-(41), we can obtain the equilibrium probabilities for qk,
k=0,1,.......,K and rk, k=0,1,.....,(K-1) for this M/G/1/K queue with single
vacations and exhaustive service. Summing (37) over k=0,1,.....,(K-1) along
with (38), we obtain that
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This would correspond to the probability that a service completion instant
leaves the queue empty, i.e. it is the start of a vacation. The time interval
between successive imbedded points would be one of the following three
possibilities.

(a) service time (with mean X ) with probability 1-r0 -q0

(b) vacation time (with mean V ) with probability r0

(c) service time and inter-arrival time (with mean X +λ-1) with probability
q0.

Defining D as before to be the mean time interval between successive
imbedded points at equilibrium, we get
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Considering the mean time interval D between successive imbedded
points, we can see that the interval actual corresponds to a job being served
only with probability (1-r0). Therefore, the carried load ρc will be given by
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corresponding to an offered load of Xλρ = . The blocking probability PB

can then be found as
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It should be noted that the state probabilities qk, k=0,1,.......,K and rk,
k=0,1,.....,(K-1)  are only valid for the system at the imbedded points
corresponding to either a service completion or a vacation completion.
However, we can use them along with some additional analysis along the
same lines as before to get the probabilities pi i=0,1,........,K for i jobs in the
system (waiting and in service) at an arbitrary instant of time.

Considering the probability of the number in the system at an arbitrary
instant of time, we can find the limiting values p0 and pK by a simple
argument. Considering the interval between successive imbedded points, the
probability p0 will be given by the ratio of the mean time spent idle in the
mean interval D.  This gives
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Using (43) and (44), this may be simplified to get

cp ρ−=10 (47)

which would be the expected result for the fraction of time the server will be
idle in the system. Similarly, a job will be blocked and denied entry in the
queue only when the system is full, i.e. in state K. Therefore,
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Consider the probabilities Qk, k=0,1,.....,K and Rk, k=0,.......,(K-1) defined
at arbitrary time instants as follows (These correspond to the probabilities qk

and rk defined earlier at the imbedded time points.)

Qk = P{k jobs in system, server currently in a vacation}  k=0,1,....,K
Rk  = P{k jobs in system, server not on vacation}  k=0,....,(K-1)

Note that when the server is not on vacation, it would either be busy serving
a job or it would be waiting idle for the first job to arrive following a
vacation which was completed without any job arrival. This is really the
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difference between the definition of Rk here and that given for the multiple
vacation model earlier.

    In order to find Qk, consider an arbitrary time instant that falls within a
vacation interval such that there are k arrivals in the time interval (say x)
between the start of that vacation interval and the selected time instant. The

probability of falling in a vacation interval would be 
D

Vr0 . The probability

of k arrivals in the time interval x would be given by the Poisson distribution,

i.e. x
k

e
k

x λλ −

!

)(
. The pdf of the time interval x itself would be given by

residual life type arguments to be 
V

xFV )(1−
. Using these, we can write

∫ ∑

∫
∞ ∞

=

−

∞
−

=
−

=

−=
−

=

0

0

0

0

)(1

!

)(

)1(,......,0
)(1

!

)(

Kkdx
V

xF
e

k

x

D

Vr

Kkdx
V

xF
e

k

x

D

Vr
Q

Kk

Vx
k

Vx
k

k

λ

λ

λ

λ

(49)

We define Fj as before to be the probability that j or more jobs arrive to the
system in a vacation interval. Using (19) and (20), we can then simplify (49)
to get
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To simplify this further, we note from (37) and (38), that
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and that
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Substituting (51) and (52) in (50), we get our final expression for Qk as
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(53)

To find Rk, we similarly consider an arbitrary time instant that falls
within a time interval where the server is not on a vacation. Note that finding
R0 is particularly straightforward as this will correspond to the fraction of
time, within the interval between successive imbedded points, when the
server is idle although it is not on a vacation. This will therefore be

D

q

D

q
R

λ
λ 0

0

0

1

== (54)

Note that we expect p0 to be equal to Q0+R0. This may be verified using
(54), (53) for k=0 and (42).

The procedure for finding Rk for the other values of k, i.e. k=1,.....,K is
similar to our earlier approach and lead to the result
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The probability pk of finding k jobs in the system at an arbitrary instant of
time for k=1,.....,K may then be found as

KkRQp kkk ,......,1=+= (56)

Using this and (54), we get our final result for the state probability at an
arbitrary instant as
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The mean number in the system N at an arbitrary instant of time may be
found using (57) to be
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The mean time W spent in system by a job which actually does enter the
system (i.e. is not blocked and denied entry) may be obtained by applying
Little's result to (58) to get

)1( BP
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−
=

λ
(59)

We also get that

       P{server is on vacation}= 
D

Vr0

       P{server is busy serving a job}= cD

Xr
ρ=

− )1( 0

       P{server is not on vacation but is idle}=
D

q

λ
0

       P{server is idle}= p0 =
D

q
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00 +


