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Chapter 1

Analysis of a M/G/1/K Queue without Vacations

We consider the single server, finite capacity queue with Poisson arrivals
and generally distributed service times. The M/G/1/K system may be
analysed using an imbedded Markov Chain approach very similar to the one
followed in Section 3.2. A queue of this type may be a better representation
of a real-life system. This is because the infinite number of buffers implied
by the M/G/1 (really the M/G/1/∝) model of Section 3.2 would be difficult
to satisfy in a real system, except probably as an approximation. A queue of
this type is illustrated in Fig. 1.
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Figure 1. A M/G/1/K Queue

For the M/M/1/K type of queue (i.e. exponentially distributed inter-
arrival times and service times), equilibrium results had been obtained earlier
in Section 2.5. Note that, following our usual notation, K represents the
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maximum of the total number of jobs that can be present in the system at any
instant of time (i.e. one job being served and K-1 others waiting for service).
Since the queue is of finite capacity, jobs arriving when the system is full
(i.e. K jobs in the system) are lost and have to leave the system without
getting any service. Such jobs are also referred to as being blocked. The
probability of jobs being lost (also referred to as the blocking probability,
PB) is as important a performance parameter for the finite capacity system as
its delay and throughput.

Following our usual practice, we define the system state at time t to be
the number in the system at that instant. As done for the M/G/1 queue of
Section 3.2, we consider the imbedded Markov Chain of the system states
just after the departure instants of the jobs that leave the queue after
obtaining service. Note that the jobs, which get lost because of blocking, do
not actually enter the queue. Their departures (without getting service) do
not contribute to the imbedded time instants considered here. Let λ be the
average arrival rate of jobs (from the Poisson arrival process) to the queue.
Note that of these arrivals, only a fraction (1-PB) will actually be able to
enter the queue.

Consider the imbedded Markov Chain of system states at these time
instants ti i=1,2,3,............. when the ith job departs from the system after
obtaining service. At a time instant ti, the system state ni will be the number
of jobs left behind in the system when the ith job departs. Note that ni will
range between 0 and K-1 since the departure of the job cannot leave the
system completely full, i.e. with system state K.  Let ai be the number of
arrivals (from the Poisson arrival process) in the ith service time. The
equations for the corresponding Markov Chain can then be written as
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Note that the approach followed in Section 3.2 was to obtain the generating
function of the system state at equilibrium using directly the expressions for
the imbedded Markov Chain. For the M/G/1/K queue, it would be easier to
directly compute the equilibrium state probabilities pd,k k=0,1,.....,(K-1) at
the departure instants of jobs from the queue. For this, we will need
transition probabilities of the imbedded Markov Chain at equilibrium. At
equilibrium, these are defined to be

}|{ 1, jnknPp iijkd === +       0 ≤ j, k≤ K-1 (2)
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Let αk be the probability of k job arrivals to the queue during a service time.
where the pdf of the service time is given as b(t) (with cdf B(t) and Laplace
Transform LB(s)). Using this, we can find αk as
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It may be noted that αk can also be found as the coefficient of zk in the
expansion of LB(λ-λz). This may be proved by using αk of (3) to show that
the generating function of the number of arrivals in a service duration will be
LB(λ-λz). This also follows from the comments made at the end of Section
2.6.2 and the approach used for obtaining equations like (2.36) or (3.13).

The transition probability pd,jk for the two cases j=0 and j=1,....., K-1 will
be found separately using the values of αk found in (3). The expressions for
these are given in (4) and (5), respectively, based on the observation that the
final state k cannot exceed K-1.
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Using the transition probabilities of (4) and (5), the equilibrium state
probabilities pd,k k=0,1....,K-1 at the departure instants may be calculated in
the usual fashion by solving the K-1 balance equations along with the
normalisation condition. These equations will be as follows.
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The transition probabilities pd,jk of (4) and (5) may now be substituted in (5)
and (6). This gives a set of linear equations that may be solved to get the
corresponding state probabilities. Note that only K independent equations are
needed, as there are only K unknowns (i.e. pd,k k=0,1,......,K-1) to be found.
This implies that apart from the normalisation condition of (6), only K-2
equations are needed from the K-1 equations of (5). This set of K-1
equations is summarised in (7).

∑

∑
−

=

+

=
+−

=

−=+=

1

0
,

1

1
1,0,,

1

2,,.........1,0

K

k
kd

k

j
jkjdkdkd

p

Kkppp αα

(7)

Alternatively, one can solve first for the normalised variables (pd,k /pd,0) using
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and then solve for pd,0  using the normalisation condition to get

∑
−

=

=
1

0 0,

,
0,

1
K

k d

kd
d

p

p
p (9)

Using this and the values obtained earlier for (pd,k /pd,0), one can then obtain
the actual state probabilities pd,k k=1,......, K-1 at the job departure instants.

Considering a system at equilibrium, let pa,k k=0,1,.....,K be the
probability that a newly arriving job, irrespective of whether it finally joins
the queue or not, finds k jobs waiting in the queue. For this system, let pk

k=0,1,.....,K be the probability that the queue has k jobs in it at an arbitrarily
chosen instant of time. Using the PASTA property of Section 2.5.1, we can
then claim that

Kkpp kak ,........,1,0, == (10)

We can also define pac, k  k=0,1,.....K-1 as the equilibrium probability of the
system state k as seen by an arrival which does actually enter the queue.
Based on the fact, that the state of the queue can change by at most ±1
because of these arrivals and the departures from it, we can claim that
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1,.......1,0,, −== Kkpp kackd (11)

Using PB as the equilibrium probability that an arrival is blocked (because
the queue is full, i.e. in state K, PB=pK), we can see that
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Note that this may also be confirmed by observing that
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     Let X be the mean service time of a job in the queue. The traffic load ρ
offered to the queue will then be given by Xλρ = . Since the average arrival
rate of jobs actually entering the queue (also the average departure rate of
jobs leaving the queue) is λc=λ(1-PB), the actual traffic throughput of the
queue will be ρc=ρ(1-PB).

Note that this implies that the probability p0 of finding the queue empty
at an arbitrary time will be

cp ρ−= 10

Using (12) for the case k=0, we can then write

0,)1()1(1 dBB pPP −=−− ρ (13)

Since pd,0 has been found earlier using (7)-(9), we can use (13) to find the
blocking probability PB (or pK) as
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Using the values of pd,k obtained using (7)-(9) and the results of (12) and
(14), the equilibrium state distribution pk, k=0,1,....(K-1) of the queue at
arbitrary time instants may then be shown to be
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The equilibrium state distribution may now be used in the usual fashion to
find the mean number N in the system as
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Note that the effective arrival rate λc to the queue will be given by
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Using this and Little's result, the mean total time spent in system by a job
actually entering the queue will be
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This may be used to get the mean time spent waiting in the queue Wq as
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where X  is the mean service time. The second moment of the time spent
waiting in queue has also been obtained in [Takagi2] and is given by
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where 2X is the second moment of the service time.

Proportionality Relationship between the M/G/1 and the
M/G/1/K Queues

Consider the way (7) would be written for a M/G/1 (i.e.M/G/1/∝) queue.
Denoting the corresponding state probabilities p∝,k this equation for the
M/G/1 queue would be
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Note that for the M/G/1 queue, the state probabilities at the departure
instants, arrival instants and at an arbitrary time instant would be the same.
(This has been discussed earlier in Section 3.2.) Comparing the form of (7)
and (19), we conclude that the state probabilities pd,k  of the M/G/1/K queue
and the state probabilities p∝,k of the M/G/1 queue will be proportional to
each other for k=0,1,......., K-1. Using the normalisation condition, the
proportional relation between them may be shown to be
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Note that (20) implies that the equilibrium state probabilities at the departure
instants of the M/G/1/K queue may be obtained by a simple truncation and
scaling of the equilibrium state probabilities of the corresponding M/G/1
queue. This may be used to find pd,k for states k=0,1,.....,(K-1) and then (12)
may be used to find the equilibrium state probabilities pk for k=0,1,.....,K-1.
Finally, the normalisation result may be used to find the blocking probability
PB=pk. In order to find the equilibrium state probabilities of the M/G/1
queue, we can either directly use (19) or invert the generating function P(z)
obtained in (3.14) of Section 3.2.2.
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Pushout Operation of the M/G/1/K Queue

In our earlier description for the M/G/1/K queue, we have used the
approach that a newly arriving job which sees the queue full, leaves without
service. Note that the order in which jobs are served can be FCFS, LCFS or
SIRO. As usual, we may note that the sequence, in which the jobs are served
once they are in the queue, will not affect the mean performance parameters,
i.e. N, Nq, W and Wq.

One can consider an alternate method for handling the jobs that arrive
when the system is full. In this, a newly arriving job is always accepted. If
the queue is full when the job arrives, it discards the one that has waited in
the queue for the longest time. (Note that a job in service is never discarded
and is allowed to continue its service until completion.) This strategy is
referred to as the pushout strategy. Note that even with the pushout strategy,
one can still operate the queue following FCFS, LCFS or SIRO service
disciplines.

It may be noted that the pushout strategy is a reasonable one to follow in
systems where a later job/message/packet arrival makes an earlier one
redundant in some way. For example, this may happen in a system handling
voice or video packets where one would prefer to discard the oldest packet
waiting in the queue rather than the more recent arrival.

The mean number (i.e. N or Nq) in a M/G/1/K queue following a pushout
strategy would be the same as for one where such a strategy is not being
followed. The average departure rate of jobs λc and the actual throughput of
the queue ρc will also be the same in the two cases.

A detailed derivation of the queue's performance under the pushout
strategy may be found in [Takagi2]. This derivation and the associated
results are somewhat difficult. However, one can easily comment on the
relative mean performance of the M/G/1/K queue operated with and without
the pushout strategy.

Applying Little's result to the M/G/1/K queue with and without pushout
strategy, we get that

PqqBqc WWPW ,)1( λλλ =−= (21)

where Wq is the mean waiting time in the M/G/1/K queue without pushout
and Wq,P is the mean time spent in the queue prior to service by a job in the
M/G/1/K queue with pushout. Note that in the latter case, this waiting time
will include both the jobs which eventually get served and ones which get
pushed out and, hence, leave without service.

Note that since λc=λ(1-PB), (21) implies that
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qBPq WPW )1(, −= (22)

and that, therefore

qPq WW ≤, (23)

We may also note that for the M/G/1/K queue with pushout, the delay
parameter Wq,P actually consists of two components. One component, Wq,PS

is the mean waiting time in the queue as seen by jobs which eventually do
get served. The other component, Wq,PNS corresponds to the time spent
waiting in the queue by jobs which get pushed out (after spending some time
waiting for service) and leave without service. It may also be noted that PB

and (1-PB) are the respective probabilities that a job is not eventually served
and that a job does get service. Using this, we get that

PNSqBPSqBPq WPWPW ,,, )1( +−= (24)

Substituting (22) in (24) gives

0))(1( ,, ≥=−− PNSqBPSqqB WPWWP (25)

and that, therefore

qPSq WW ≤, (26)

Note that (26) leads to the following important conclusion. For a
M/G/1/K queue with pushout, the queueing delay seen by the jobs which
eventually get served will be less than what one would observe for a queue
without pushout. Since the system throughput will be the same in both cases,
the queue with pushout provides a way of giving improved service (lower
delays) to the jobs that actually do get service. The reader is referred to
[Takagi2] for more detailed analysis of the M/G/1/K queue operated with the
pushout strategy.

An Alternate Derivation for the State Probabilities at an
Arbitrary Instant in a M/G/1/K Queue

It is possible to provide a more direct approach to finding the state
probabilities of the M/G/1/K queue at an arbitrary instant of time for a queue
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in equilibrium. For this, we first note that the mean time interval between
successive imbedded points (at the job departure instants) will be

X+
λ
1

      if the queue is empty at the earlier imbedded point

X              if the queue is not empty at the earlier imbedded point

Using the above, we obtain the probability p0 that the queue is empty at an
arbitrarily chosen time to be

ρ
λ

λ
+

=
−+






 +









=
0,

0,

0,0,

0,

0

)1(
1

1

d

d

dd

d

p

p

pXpX

p

p (27)

which agrees with the expression p0=1-ρc obtained earlier or as given in (12)
and (15) for k=0.

     Now consider the situation where the arbitrarily chosen time instant falls
within a service duration where x is the amount of service already provided.
We consider the case where there are k jobs in the system for k=1,....,(K-1).

The pdf of x may be found from residual life arguments to be 
X

xB )(1 −
where

cρ is the probability that the arbitrarily chosen time instant will fall within a
service time. Considering separately the two cases where the previous
departure left the queue empty or left the queue with j, j=1,....,k jobs in it, we
get
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Let Ak be the probability that there are k or more arrivals during a service
time where
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(The derivation of these results is given in the Appendix.)

Substitution of (29) in (28) gives
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To simplify this further, we need the following result which may be proved
by recursion.
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Substituting this in (31), gives pk, k=1,.....,(K-1) with the same expression as
obtained earlier in (12) and (15).

We can use a similar approach to find the probability pK, i.e. pk for k=K,
when the queue is found to be full at an arbitrary time instant. In this case,
we do need to take into account the situation that arrivals coming when the
system is already full will be denied entry into the queue and will be lost.
Following the same arguments as given earlier, we get
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Using (29), we can rewrite (33) as
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To simplify (34) further, we need the result that
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Note that this follows from summing pd,k over k=1,.....,(K-1) and using (30)
to get
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Substituting (35) in (34), we get the same expression for pK as given for the
blocking probability PB (which is the same quantity) in (14).

Appendix:

Consider (29) for k=1, i.e. for A1. For this, we need to prove that
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Using integration by parts, we can show that
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and that
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Substituting (A.3) in (A.1), we can show that (29) holds for k=1. We can
also show from (A.2) that
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Since we have shown that (29) holds for k=1, we can now use induction
to show the general result. Note that from the definition of Ak, we can also
write that

∫
∞

−
+ −=−=

0

1 )(
!

)(
dxxbe

k

x
AAA x

k

kkkk
λλ

α (A.6)

Assuming that (29) holds for k, we can substitute that result for Ak in the
RHS of (A.5) and use (A.5) to get
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We can therefore claim that if (29) holds for Ak, then it holds for Ak+1. Since
we have shown that it holds for A1, we can claim that it holds for all k,
k=1,2,......,∞.

      Actually, one can give a physical reasoning to justify (29), without going
through the details of the proof given above. For this, consider arrivals to a
simple M/G/1 queue. The justification for Ak as given by (29), then follows
by considering an arbitrary time instant within a service time. Let this time
instant be the time at which the kth arrival in the on-going service time enters
the system. For this, let x be the time that has elapsed from the beginning of
the currently on-going service to this instant. Note that [1-B(x)] will be the
probability that the service time will be greater than or equal to x.
Combining these, we get that
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from which (29) follows.
Once we have shown that (29) holds, (30) follows directly using
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