EE633 2014-2015F **Final Exam Solutions**

0

1. (a) **State Transition Diagram**

Balance Equations

$$\begin{aligned} & (\lambda + n\gamma) p_{0,n} = \mu p_{1,n} & n \ge 0 \\ & (\lambda + \mu) p_{1,n} = \lambda p_{0,n} + (n+1)\gamma p_{0,n+1} + \lambda p_{1,n-1} & n \ge 1 \\ & (\lambda + \mu) p_{1,0} = \lambda p_{0,0} + \gamma p_{0,1} \end{aligned}$$

Define

$$P_0(z) = \sum_{n=0}^{\infty} z^n p_{0,n} \qquad P_1(z) = \sum_{n=0}^{\infty} z^n p_{1,n}$$

Then

and

(b)

$$\lambda P_0(z) + z\gamma P_0'(z) = \mu P_1(z)$$

(\lambda + \mu)P_1(z) = \lambda P_0(z) + \gamma P_0'(z) + \lambda z P_1(z)

(B)

Eliminating $P'_0(z)$ in the above, we get $P_1(z) = P_0(z) \frac{\rho}{(1-\rho z)}$ $\rho = \frac{\lambda}{\mu}$

Using this in (A), gives $\frac{P_0'}{P_0} = \frac{\lambda \rho}{\gamma(1-\rho z)}$

This can be solved to get $P_0(z) = C(1-\rho z)^{-\frac{\lambda}{\gamma}}$ $P_1(z) = C\rho(1-\rho z)^{-\frac{\lambda}{\gamma}-1}$ where C is an unknown constant of integration. To find C we use the fact that $P_0(1) + P_1(1) = 1$.

This gives
$$C = (1-\rho)^{\left(\frac{\lambda}{\gamma}\right)+1}$$
 $P_0(z) = (1-\rho z) \left(\frac{1-\rho}{1-\rho z}\right)^{\left(\frac{\lambda}{\gamma}\right)+1}$ $P_1(z) = \rho \left(\frac{1-\rho}{1-\rho z}\right)^{\left(\frac{\lambda}{\gamma}\right)+1}$

The generating function P(z) of the number of users in orbit will then be given by –

$$P(z) = \sum_{n=0}^{\infty} z^n (p_{0,n} + p_{1,n}) = P_0(z) + P_1(z) = (1 + \rho - \rho z) \left(\frac{1 - \rho}{1 - \rho z}\right)^{\left(\frac{\lambda}{\gamma}\right) + 1}$$
$$\ln P(z) = \left[\frac{\lambda}{\gamma} + 1\right] \left[\ln(1 - \rho) - \ln(1 - \rho z)\right] + \ln(1 + \rho - \rho z)$$
$$\frac{P'(z)}{P(z)} = \left(\frac{\rho \mu}{\gamma} + 1\right) \frac{\rho}{1 - \rho z} - \frac{\rho}{1 + \rho - \rho z}$$

Using
$$P(1)=1$$
 and evaluating the above at z=1, we get
Mean number in orbit = $N_O = P'(1) = \left(\frac{\rho\mu}{\gamma} + 1\right)\frac{\rho}{1-\rho} - \rho = \frac{\rho^2(\mu+\gamma)}{\gamma(1-\rho)}$

Simple Logic: If the system is stable then the overall departure from the system must also be at (c) rate λ . This is then also the departure rate from the M/M/1/1 queue and since the queue must be stable (since the system is stable), this must also be the overall rate of arrivals to the M/M/1/1 queue that actually enter the queue. The probability of queue occupancy (i.e. one

customer in the M/M/1/1 queue) is $\rho = \frac{\lambda}{\mu}$. Mean Number in the M/M/1/1 Queue = ρ

(A)

Alternate Method:	P{one customer in the queue} = $\sum_{n=1}^{\infty} p_{1n} = P_1(1) = \rho$
Therefore	Mean Number in the M/M/1/1 Queue = $ ho$

2. (a)	Solve flow bala	nce to get	$\tilde{\lambda} = ($	$2.051\lambda, 2.282\lambda, 1.026\lambda, 0.256\lambda)$			
		and	$\tilde{ ho}$ = ($(2.051\rho, 1.141\rho, 1.026\rho, 0.128\rho)$			
	For the queueing network to be in equilibrium, we require 2.051						
	Therefore,	ho < 0.488	or	$\lambda < 0.488 \mu$			

(b)	For $\lambda = 0.4, \mu = 1$, we get	$\tilde{\rho} = (0.82, 0.456, 0.41, 0.051)$
	The mean number in each queue	$\tilde{N} = (4.568, 0.84, 0.696, 0.054)$
	Therefore, the mean total number o	f jobs in the system is 6.158

In addition (for the later parts), we would need the mean time spent in each queue. This will be given by $\tilde{W} = (5.568, 0.92, 1.696, 0.527)$

- (c) Transit Delay for Jobs Entering at A Set the external arrival at B to zero and calculate the flows in each queue. For this, we get $\tilde{\lambda} = (0.8204, 0.5128, 0.4104, 0.1024)$ And $\tilde{V}^* = (1.0255, 0.6406, 0.513, 0.128)$ Therefore Transit Delay for a job entering at A will be **7.2368**
- Q4 shorted **3. (a)** Since Q4 is the designated sub-network (target $T(j) = \lambda_{sc}(j)$ queue), we redraw the 0.5 Q1 Q3 network with Q4 shorted 0.5 μ ш in order to compute the FES. We then compute 0.5 0.5 $T(j)=\lambda_{SC}(j)$ as the flow (throughput) through that short for j=1,2,....,M Q2 where *j* is the number of 2μ jobs circulating in the network. (Note that M=4in the problem given.) $\lambda_1 = 0.5\lambda_3 \quad \lambda_2 = 0.5\lambda_1 + 0.5\lambda_3$ By flow balance, Therefore $\lambda_3 = 2\lambda_1$ and $\lambda_2 = 1.5\lambda_1$ $T(j) = \lambda_{SC}(j) = 0.5\lambda_3 = \lambda_1$

Choosing Q1 as the reference queue with $\lambda_1 = \mu$, we get

 $\begin{array}{ll} \mbox{Relative Throughputs} & \lambda_1 = \mu & \lambda_2 = 1.5 \mu & \lambda_3 = 2 \mu \\ \mbox{Visit Ratios} & V_1 = 1 & V_2 = 1.5 & V_3 = 2 \\ \mbox{Relative Utilizations} & u_1 = 1 & u_2 = 0.75 & u_3 = 2 \\ \end{array}$

Initialization Recursion	$N_1 = 0$ $N_2 = 0$ $N_3 = 0$				
	$W_1(1) = 1$	$W_2(1) = 0.5$	$W_3(1) = 1$		
<i>m</i> =1	$\lambda_1^*(1) = 0.267$	$\lambda_2^*(1) = 0.400$	$\lambda_3^*(1) = 0.533$	$\lambda_{sc}(1) = 0.267$	
	$N_1(1) = 0.267$	$N_2(1) = 0.200$	$N_3(1) = 0.533$		
	$W_1(2) = 1.267$	$W_2(2) = 0.6$	$W_3(2) = 1.533$		
<i>m</i> =2	$\lambda_1^*(2) = 0.382$	$\lambda_2^*(2) = 0.573$	$\lambda_3^*(2) = 0.764$	$\lambda_{SC}(2) = 0.382$	
	$N_1(2) = 0.484$	$N_2(2) = 0.344$	$N_3(2) = 1.172$		
	$W_1(3) = 1.484$	$W_2(3) = 0.672$	$W_3(3) = 2.172$		
<i>m</i> =3	$\lambda_1^*(3) = 0.439$	$\lambda_2^*(3) = 0.658$	$\lambda_3^*(3) = 0.878$	$\lambda_{sc}(3) = 0.439$	
	$N_1(3) = 0.651$	$N_2(3) = 0.442$	$N_3(3) = 1.906$		
	$W_1(4) = 1.651$	$W_2(4) = 0.721$	$W_3(4) = 2.906$		
<i>m</i> =4	$\lambda_1^*(4) = 0.468$	$\lambda_2^*(4) = 0.702$	$\lambda_3^*(4) = 0.936$	$\lambda_{SC}(4) = 0.468$	
	$N_1(4) = 0.773$	$N_2(4) = 0.506$	$N_34) = 2.721$		

 The State Dependent Service Rates for the corresponding

 FES would be

 T(1)=0.267
 T(2)=0.382
 T(3)=0.439
 T(4)=0.468

where $N_{FES} + N_{Q4} = 4$

The corresponding State Transition Diagram will be as shown below

FES

T(j)

Q4

2μ

4. M/G/1 queue with vacations AND exceptional first service

P{no arrival in a vacation interval} =
$$\int_{0}^{\infty} e^{-\lambda v} f_V(v) dv = L_V(\lambda)$$

Mean Number of Vacations in a Cycle = $\frac{1}{1 - L_V(\lambda)}$
Mean Number of Jobs starting the Busy Period in a cycle = $\frac{\lambda \overline{V}}{1 - L_V(\lambda)}$
(a) Mean Length of the Busy Period = $(\overline{X} + \Delta) + \lambda(\overline{X} + \Delta) \frac{\overline{X}}{1 - \lambda \overline{X}} + \left[\frac{\lambda \overline{V}}{1 - L_V(\lambda)} - 1\right] \frac{\overline{X}}{1 - \lambda \overline{X}}$
 $= \frac{\overline{X} + \Delta}{1 - \lambda \overline{X}} + \left[\frac{\lambda \overline{V} + L_V(\lambda) - 1}{1 - L_V(\lambda)}\right] \frac{\overline{X}}{1 - \lambda \overline{X}}$
 $= \left(\frac{\overline{X}}{1 - \lambda \overline{X}}\right) \left[\frac{\lambda \overline{V}}{1 - L_V(\lambda)}\right] + \frac{\Delta}{1 - \lambda \overline{X}} = \overline{BP}$
(b) Mean Cycle Length = $\left(\frac{\overline{X}}{-\lambda \overline{Y}}\right) \left[\frac{\lambda \overline{V}}{-\lambda \overline{Y}}\right] + \frac{\Delta}{-\lambda \overline{Y}} + \frac{\overline{V}}{-\lambda \overline{Y}}$

(b) Mean Cycle Length
$$= \left(\frac{X}{1-\lambda \overline{X}}\right) \left\lfloor \frac{\lambda V}{1-L_V(\lambda)} \right\rfloor + \frac{\Delta}{1-\lambda \overline{X}} + \frac{V}{1-L_V(\lambda)}$$

 $= \frac{\overline{V}}{(1-\lambda \overline{X})(1-L_V(\lambda))} + \frac{\Delta}{1-\lambda \overline{X}} = \overline{T_{cycle}}$

(c) Note that in a standard M/G/1 queue the busy period length is $\frac{\overline{X}}{1-\lambda\overline{X}}$ and therefore the mean number of customers served in a busy period is $1 + \frac{\lambda\overline{X}}{1-\lambda\overline{X}} = \frac{1}{1-\lambda\overline{X}}$. Drawing an analogy from there, the mean number served in this queue will be –

there, the mean number served in this queue will be –

$$\overline{N_{BP}} = 1 + \frac{\lambda(\overline{X} + \Delta)}{1 - \lambda \overline{X}} + \left[\frac{\lambda \overline{V}}{1 - L_V(\lambda)} - 1\right] \frac{1}{1 - \lambda \overline{X}}$$

$$= \frac{1 + \lambda \Delta}{1 - \lambda \overline{X}} + \left[\frac{\lambda \overline{V}}{1 - L_V(\lambda)} - 1\right] \frac{1}{1 - \lambda \overline{X}}$$

$$= \frac{\lambda \Delta}{1 - \lambda \overline{X}} + \left[\frac{\lambda \overline{V}}{1 - L_V(\lambda)}\right] \frac{1}{1 - \lambda \overline{X}}$$

Alternative (Trivial) Argument : Mean number served in a cycle must be equal to the mean number of arrivals in a cycle for the queue to be in equilibrium. Therefore

$$\overline{N_{BP}} = \lambda \overline{T_{cycle}} = \frac{\lambda V}{(1 - \lambda \overline{X})(1 - L_V(\lambda))} + \frac{\lambda \Delta}{1 - \lambda \overline{X}}$$

(d) To find the mean effective service time, we can find the average over a cycle. This gives – \overline{X}

Mean Service Time
$$\frac{X + \Delta + X(N_{BP} - 1)}{\overline{N_{BP}}} = \overline{X} + \frac{\Delta}{\overline{N_{BP}}}$$
 which is also trivially obvious!