EE633 2014-2015F

Final Exam Solutions

1. (a) State Transition Diagram

Balance Equations

$(\lambda+n \gamma) p_{0, n}=\mu p_{1, n} \quad n \geq 0$
$(\lambda+\mu) p_{1, n}=\lambda p_{0, n}+(n+1) \gamma p_{0, n+1}+\lambda p_{1, n-1} \quad n \geq 1$

$(\lambda+\mu) p_{1,0}=\lambda p_{0,0}+\gamma p_{0,1}$
Define $\quad P_{0}(z)=\sum_{n=0}^{\infty} z^{n} p_{0, n} \quad P_{1}(z)=\sum_{n=0}^{\infty} z^{n} p_{1, n}$
Then

$$
\begin{equation*}
\lambda P_{0}(z)+z \gamma P_{0}^{\prime}(z)=\mu P_{1}(z) \tag{A}
\end{equation*}
$$

and

$$
\begin{equation*}
(\lambda+\mu) P_{1}(z)=\lambda P_{0}(z)+\gamma P_{0}^{\prime}(z)+\lambda z P_{1}(z) \tag{B}
\end{equation*}
$$

Eliminating $P_{0}^{\prime}(z)$ in the above, we get $\quad P_{1}(z)=P_{0}(z) \frac{\rho}{(1-\rho z)} \quad \rho=\frac{\lambda}{\mu}$
Using this in (A), gives $\frac{P_{0}^{\prime}}{P_{0}}=\frac{\lambda \rho}{\gamma(1-\rho z)}$
This can be solved to get $\quad P_{0}(z)=C(1-\rho z)^{-\frac{\lambda}{\gamma}} \quad P_{1}(z)=C \rho(1-\rho z)^{-\frac{\lambda}{\gamma}-1}$ where C is an unknown constant of integration. To find C we use the fact that $\quad P_{0}(1)+P_{1}(1)=1$.

This gives

$$
C=(1-\rho)^{\left(\frac{\lambda}{\gamma}\right)+1} \quad P_{0}(z)=(1-\rho z)\left(\frac{1-\rho}{1-\rho z}\right)^{\left(\frac{\lambda}{\gamma}\right)+1} \quad P_{1}(z)=\rho\left(\frac{1-\rho}{1-\rho z}\right)^{\left(\frac{\lambda}{\gamma}\right)+1}
$$

The generating function $P(z)$ of the number of users in orbit will then be given by -

$$
P(z)=\sum_{n=0}^{\infty} z^{n}\left(p_{0, n}+p_{1, n}\right)=P_{0}(z)+P_{1}(z)=(1+\rho-\rho z)\left(\frac{1-\rho}{1-\rho z}\right)^{\left(\frac{\lambda}{\gamma}\right)+1}
$$

(b)

$$
\begin{aligned}
& \ln P(z)=\left[\frac{\lambda}{\gamma}+1\right][\ln (1-\rho)-\ln (1-\rho z)]+\ln (1+\rho-\rho z) \\
& \frac{P^{\prime}(z)}{P(z)}=\left(\frac{\rho \mu}{\gamma}+1\right) \frac{\rho}{1-\rho z}-\frac{\rho}{1+\rho-\rho z}
\end{aligned}
$$

Using $P(1)=1$ and evaluating the above at $\mathrm{z}=1$, we get
Mean number in orbit $=N_{O}=P^{\prime}(1)=\left(\frac{\rho \mu}{\gamma}+1\right) \frac{\rho}{1-\rho}-\rho=\frac{\rho^{2}(\mu+\gamma)}{\gamma(1-\rho)}$
(c) Simple Logic: If the system is stable then the overall departure from the system must also be at rate λ. This is then also the departure rate from the $M / M / 1 / 1$ queue and since the queue must be stable (since the system is stable), this must also be the overall rate of arrivals to the $M / M / 1 / 1$ queue that actually enter the queue. The probability of queue occupancy (i.e. one customer in the $\mathrm{M} / \mathrm{M} / 1 / 1$ queue) is $\rho=\frac{\lambda}{\mu}$.

Mean Number in the $\mathrm{M} / \mathrm{M} / 1 / 1$ Queue $=\rho$

Alternate Method: $\quad \mathrm{P}\{$ one customer in the queue $\}=\sum_{n=1}^{\infty} p_{1 n}=P_{1}(1)=\rho$
Therefore \quad Mean Number in the $M / M / 1 / 1$ Queue $=\rho$
2. (a) Solve flow balance to get $\quad \tilde{\lambda}=(2.051 \lambda, 2.282 \lambda, 1.026 \lambda, 0.256 \lambda)$
and $\quad \tilde{\rho}=(2.051 \rho, 1.141 \rho, 1.026 \rho, 0.128 \rho)$
For the queueing network to be in equilibrium, we require $2.051 \rho<1$
Therefore, $\quad \rho<0.488$ or $\lambda<0.488 \mu$
(b) For $\lambda=0.4, \mu=1$, we get $\quad \tilde{\rho}=(0.82,0.456,0.41,0.051)$

The mean number in each queue $\quad \tilde{N}=(4.568,0.84,0.696,0.054)$
Therefore, the mean total number of jobs in the system is $\mathbf{6 . 1 5 8}$

In addition (for the later parts), we would need the mean time spent in each queue. This will be given by $\quad \tilde{W}=(5.568,0.92,1.696,0.527)$
(c) Transit Delay for Jobs Entering at A

Set the external arrival at B to zero and calculate the flows in each queue. For this, we get

$$
\begin{aligned}
& \tilde{\lambda}=(0.8204,0.5128,0.4104,0.1024) \\
& \tilde{V}^{*}=(1.0255,0.6406,0.513,0.128)
\end{aligned}
$$

And
Therefore Transit Delay for a job entering at A will be $\mathbf{7 . 2 3 6 8}$
3. (a) Since Q4 is the designated sub-network (target queue), we redraw the network with Q4 shorted in order to compute the FES. We then compute $T(j)=\lambda_{s c}(j)$ as the flow (throughput) through that short for $j=1,2, \ldots, M$ where j is the number of jobs circulating in the network. (Note that $M=4$ in the problem given.)
By flow balance, $\quad \lambda_{1}=0.5 \lambda_{3} \quad \lambda_{2}=0.5 \lambda_{1}+0.5 \lambda_{3}$
Therefore $\quad \lambda_{3}=2 \lambda_{1}$ and $\lambda_{2}=1.5 \lambda_{1} \quad T(j)=\lambda_{S C}(j)=0.5 \lambda_{3}=\lambda_{1}$

Choosing Q1 as the reference queue with $\lambda_{1}=\mu$, we get

Relative Throughputs

$$
\begin{array}{lll}
\lambda_{1}=\mu & \lambda_{2}=1.5 \mu & \lambda_{3}=2 \mu \\
V_{1}=1 & V_{2}=1.5 & V_{3}=2 \\
u_{1}=1 & u_{2}=0.75 & u_{3}=2
\end{array}
$$

Visit Ratios
Relative Utilizations

Initialization
Recursion
$m=1$

$$
N_{1}=0 \quad N_{2}=0 \quad N_{3}=0
$$

	$W_{1}(1)=1$	$W_{2}(1)=0.5$	$W_{3}(1)=1$	
$m=1$	$\lambda_{1}^{*}(1)=0.267$	$\lambda_{2}^{*}(1)=0.400$	$\lambda_{3}^{*}(1)=0.533$	$\lambda_{S C}(1)=0.267$
	$N_{1}(1)=0.267$	$N_{2}(1)=0.200$	$N_{3}(1)=0.533$	
	$W_{1}(2)=1.267$	$W_{2}(2)=0.6$	$W_{3}(2)=1.533$	
	$\lambda_{1}^{*}(2)=0.382$	$\lambda_{2}^{*}(2)=0.573$	$\lambda_{3}^{*}(2)=0.764$	$\lambda_{S C}(2)=0.382$
	$N_{1}(2)=0.484$	$N_{2}(2)=0.344$	$N_{3}(2)=1.172$	
	$W_{1}(3)=1.484$	$W_{2}(3)=0.672$	$W_{3}(3)=2.172$	
	$\lambda_{1}^{*}(3)=0.439$	$\lambda_{2}^{*}(3)=0.658$	$\lambda_{3}^{*}(3)=0.878$	$\lambda_{S C}(3)=0.439$
	$N_{1}(3)=0.651$	$N_{2}(3)=0.442$	$N_{3}(3)=1.906$	
	$W_{1}(4)=1.651$	$W_{2}(4)=0.721$	$W_{3}(4)=2.906$	
	$\lambda_{1}^{*}(4)=0.468$	$\lambda_{2}^{*}(4)=0.702$	$\lambda_{3}^{*}(4)=0.936$	$\lambda_{S C}(4)=0.468$
	$N_{1}(4)=0.773$	$N_{2}(4)=0.506$	$\left.N_{3} 4\right)=2.721$	

The State Dependent Service Rates for the corresponding FES would be $T(1)=0.267$ $T(2)=0.382 \quad T(3)=0.439$
$T(4)=0.468$
(b) We can define the system state as $\left(N_{F E S}, N_{Q 4}\right)$
where $\quad N_{F E S}+N_{Q 4}=4$
The corresponding State Transition Diagram will be as shown below

Solving this -

$$
\begin{aligned}
& 0.267 p_{1,3}=2 p_{0,4} \\
& 0.382 p_{2,2}=2 p_{1,3} \\
& 0.439 p_{3,1}=2 p_{2,2} \\
& 0.468 p_{4,0}=2 p_{3,1}
\end{aligned}
$$

$$
\begin{array}{ll}
p_{1,3}=7.491 p_{0,4} & \\
p_{2,2}=39.22 p_{0,4} & \text { Therefore } \\
p_{3,1}=178.68 p_{0,4} & \\
p_{4,0}=763.59 p_{0,4} &
\end{array}
$$

$$
P_{4}=p_{0,4}=0.001
$$

$$
P_{3}=p_{1,3}=0.0076
$$

$$
P_{2}=p_{2,2}=0.0396
$$

$$
P_{1}=p_{3,1}=0.1805
$$

$$
P_{0}=p_{4,0}=0.7713
$$

4. M/G/1 queue with vacations AND exceptional first service

$\mathrm{P}\{$ no arrival in a vacation interval $\}=\int_{0}^{\infty} e^{-\lambda v} f_{V}(v) d v=L_{V}(\lambda)$
Mean Number of Vacations in a Cycle $=\frac{1}{1-L_{V}(\lambda)}$
Mean Number of Jobs starting the Busy Period in a cycle $=\frac{\lambda \bar{V}}{1-L_{V}(\lambda)}$
(a) Mean Length of the Busy Period $=(\bar{X}+\Delta)+\lambda(\bar{X}+\Delta) \frac{\bar{X}}{1-\lambda \bar{X}}+\left[\frac{\lambda \bar{V}}{1-L_{V}(\lambda)}-1\right] \frac{\bar{X}}{1-\lambda \bar{X}}$

$$
\begin{aligned}
& =\frac{\bar{X}+\Delta}{1-\lambda \bar{X}}+\left[\frac{\lambda \bar{V}+L_{V}(\lambda)-1}{1-L_{V}(\lambda)}\right] \frac{\bar{X}}{1-\lambda \bar{X}} \\
& =\left(\frac{\bar{X}}{1-\lambda \bar{X}}\right)\left[\frac{\lambda \bar{V}}{1-L_{V}(\lambda)}\right]+\frac{\Delta}{1-\lambda \bar{X}}=\overline{B P}
\end{aligned}
$$

(b) Mean Cycle Length $=\left(\frac{\bar{X}}{1-\lambda \bar{X}}\right)\left[\frac{\lambda \bar{V}}{1-L_{V}(\lambda)}\right]+\frac{\Delta}{1-\lambda \bar{X}}+\frac{\bar{V}}{1-L_{V}(\lambda)}$

$$
=\frac{\bar{V}}{(1-\lambda \bar{X})\left(1-L_{V}(\lambda)\right)}+\frac{\Delta}{1-\lambda \bar{X}}=\overline{T_{\text {cycle }}}
$$

(c) Note that in a standard $\mathrm{M} / \mathrm{G} / 1$ queue the busy period length is $\frac{\bar{X}}{1-\lambda \bar{X}}$ and therefore the mean number of customers served in a busy period is $1+\frac{\lambda \bar{X}}{1-\lambda \bar{X}}=\frac{1}{1-\lambda \bar{X}}$. Drawing an analogy from there, the mean number served in this queue will be -

$$
\begin{aligned}
\overline{N_{B P}} & =1+\frac{\lambda(\bar{X}+\Delta)}{1-\lambda \bar{X}}+\left[\frac{\lambda \bar{V}}{1-L_{V}(\lambda)}-1\right] \frac{1}{1-\lambda \bar{X}} \\
& =\frac{1+\lambda \Delta}{1-\lambda \bar{X}}+\left[\frac{\lambda \bar{V}}{1-L_{V}(\lambda)}-1\right] \frac{1}{1-\lambda \bar{X}} \\
& =\frac{\lambda \Delta}{1-\lambda \bar{X}}+\left[\frac{\lambda \bar{V}}{1-L_{V}(\lambda)}\right] \frac{1}{1-\lambda \bar{X}}
\end{aligned}
$$

Alternative (Trivial) Argument : Mean number served in a cycle must be equal to the mean number of arrivals in a cycle for the queue to be in equilibrium. Therefore

$$
\overline{N_{B P}}=\lambda \overline{T_{\text {cycle }}}=\frac{\lambda \bar{V}}{(1-\lambda \bar{X})\left(1-L_{V}(\lambda)\right)}+\frac{\lambda \Delta}{1-\lambda \bar{X}}
$$

(d) To find the mean effective service time, we can find the average over a cycle. This gives -

$$
\text { Mean Service Time } \frac{\bar{X}+\Delta+\bar{X}\left(\overline{N_{B P}}-1\right)}{\overline{N_{B P}}}=\bar{X}+\frac{\Delta}{\overline{N_{B P}}} \quad \text { which is also trivially obvious! }
$$

