
EE633 Queueing Systems (2016-17F) 
Solutions to the End-Semester Examination 

1.  
(a) For Class 2 jobs, the queue will behave like a simple M/G/1/2 queue and the state probabilities can 
be found accordingly. We then have the following transition probabilities at the departure instants – 
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Normalization Condition:  0 1 1d dp p   

 
Therefore, state probabilities of the Class 2 customers at the departure instants of the Class 2 customers 
are -    0 2 2 1 2 2( ) 1 ( )d B d Bp L p L      

 

Traffic actually offered to the queue 2 2 2(1 )c BP    where 2 2 2X   
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Using these, 
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will be the required state probabilities at an arbitrary time instant 
 
(b) The queue would be stable for Class 1 customers if the following condition holds. 
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(c) Let   = P{no Class 2 arrivals in a Class 2 service time} = 2
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 Note that you can also obtain T from ( )TL s  

 

(e)  In order to use the standard M/G/1 result, note that 2 2 2
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2. The flow balance equations for this system may be written as – 
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 Solving these, we get 1 2 3 43.03 , 1.45 , 1.52 , 2.24            

(a) Traffic Vector for the queues    3.03 , 0.725 , 0.76 , 2.24
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 Therefore, the system will be stable if   3.03 1
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
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(b) For Λ = 0.3  and µ= 1   
       1 2 3 40.908, 0.434, 0.455, 0.672         &  1 2 3 40.908, 0.217, 0.228, 0.672        

(i) The mean transit delays through the queues may be found by using the corresponding 
M/M/1 expression. These are  1 2 3 410.87 0.639 0.648 3.049W W W W     

The visit ratios to the queues are  1 2 3 41.009 0.482 0.506 0.747V V V V     

Therefore, the mean transit time 
through the system will be WAB.CD 

= 13.88                  [2] 
 
(ii) To find the mean transit delay 
for jobs entering the system at B, 
set the flow entering from A to 
zero. The network will then be as 
shown in the figure.  



 
Then,   1 2 3 2 4 3 1 4 1 20.5 0.2 , 0.3 0.2 , 0.5 , 0.5 0.5                 

Therefore,  1 2 3 40.197, 0.355, 0.099, 0.276        

Visit Ratios 1 2 3 40.657, 1.183, 0.33, 0.92V V V V     

Using these with the queue delays calculated in (i) gives WB,CD=10.916                             [3+3] 
 
To find the mean delay for jobs entering from A, we can repeat the same strategy setting the 
flow entering at B to be zero in the original network. However, it would be much easier to use 
the following. 
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(iii) To do this, we first consider the 
network where jobs enter only from B 
and leave from either C or D, i.e. the 
same network as given above in the 
solution for (ii). We then reverse the 
network where the flows enter from C 
or D and leave through B.  The 
reversed network will be as shown. 
 
In this network, we now set the flow 
entering from D to be zero and consider only the flow entering from C. (Note that this flow will 
only leave through B.) The flow equations then are – 

1 3 4 2 1 4 3 1 4 20.357 0.9 0.643 0.079 0.1 0.155                 

 Solving these, we get  1 2 3 40.093 0.093 0.088 0.014        

 with Visit Ratios   1 2 3 41.177 1.177 1.114 0.177V V V V     

 Therefore, the mean transit time WB,C = 14.16 
 

 Note that  , , , ,
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(Direct analysis gives WB,D=9.5. The difference 
appears to be because of round-off errors.) 
 
(c) Reversing the original network, will give the 
network shown.           [4] 
 
Note: The numbers in blue give the actual flow 
values. The numbers in italics (black) give the 
corresponding routing probabilities 
 
 
3. (a) Late Arrival Model 
Considering the Imbedded Markov Chain at the customer departure instants with the usual notation– 
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Differentiating and evaluating at z=1, we get- 
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Differentiating twice to calculate N, 
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Evaluating the last expression for z=1, 
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(b) FCFS Queue 

For the Late Arrival model, the number in the system as seen by a departing user would be the 

number arriving while that user was in the system. Let ( ) 1,.....,Wg k k   be the probability 

that the user spent k time slots in the system with 
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Note that in the Early Arrival model, a customer spending the same amount of time in the 
system (as for the Late Arrival model) will count arrivals in one less slot on departure. Therefore, 
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Therefore, 
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