EE633 Queueing Systems (2016-17F)

Solutions to the End-Semester Examination
1.
(a) For Class 2 jobs, the queue will behave like a simple $M / G / 1 / 2$ queue and the state probabilities can be found accordingly. We then have the following transition probabilities at the departure instants -

$$
\begin{array}{ll}
p_{d, 00}=\alpha_{0}=L_{B 2}\left(\lambda_{2}\right) & p_{d, 01}=1-L_{B 2}\left(\lambda_{2}\right) \\
p_{d, 10}=L_{B 2}\left(\lambda_{2}\right) & p_{d, 11}=1-L_{B 2}\left(\lambda_{2}\right)
\end{array}
$$

Balance Equation: $\quad p_{d 0}=p_{d 0} L_{B 2}\left(\lambda_{2}\right)+p_{d 1} L_{B 2}\left(\lambda_{2}\right) \Rightarrow \quad p_{d 1}=p_{d 0} \frac{\left[1-L_{B 2}\left(\lambda_{2}\right)\right]}{L_{B 2}\left(\lambda_{2}\right)}$
Normalization Condition: $\quad p_{d 0}+p_{d 1}=1$
Therefore, state probabilities of the Class 2 customers at the departure instants of the Class 2 customers are -

$$
p_{d 0}=L_{B 2}\left(\lambda_{2}\right) \quad p_{d 1}=1-L_{B 2}\left(\lambda_{2}\right)
$$

Traffic actually offered to the queue $\rho_{c 2}=\rho_{2}\left(1-P_{B 2}\right)$ where $\rho_{2}=\lambda_{2} \overline{X_{2}}$
Therefore, $\quad p_{0}=1-\rho_{2}\left(1-P_{B 2}\right)=\left(1-P_{B 2}\right) p_{d 0} \quad \Rightarrow \quad 1-P_{B 2}=\frac{1}{p_{d 0}+\rho_{2}}=\frac{1}{L_{B 2}\left(\lambda_{2}\right)+\rho_{2}}$
Using these,

$$
\begin{aligned}
& p_{0}=\left(1-P_{B 2}\right) p_{d 0}=\frac{L_{B 2}\left(\lambda_{2}\right)}{\rho_{2}+L_{B 2}\left(\lambda_{2}\right)} \\
& p_{1}=\left(1-P_{B 2}\right) p_{d 1}=\frac{1-L_{B 2}\left(\lambda_{2}\right)}{\rho_{2}+L_{B 2}\left(\lambda_{2}\right)} \\
& p_{2}=P_{B 2}=\frac{\rho_{2}+L_{B 2}\left(\lambda_{2}\right)-1}{\rho_{2}+L_{B 2}\left(\lambda_{2}\right)}
\end{aligned}
$$

[4]
will be the required state probabilities at an arbitrary time instant
(b) The queue would be stable for Class 1 customers if the following condition holds.

$$
\begin{equation*}
\lambda_{1} \overline{X_{1}}+\lambda_{2}\left(1-P_{B 2}\right) \overline{X_{2}}<1 \quad \Rightarrow \quad \rho_{1}<\frac{L_{B 2}\left(\lambda_{2}\right)}{L_{B 2}\left(\lambda_{2}\right)+\rho_{2}} \tag{1}
\end{equation*}
$$

(c) Let $\alpha=\mathrm{P}\{$ no Class 2 arrivals in a Class 2 service time $\}=\int_{0}^{\infty} e^{-\lambda_{2} x} b_{2}(x) d x=L_{B 2}\left(\lambda_{2}\right)$

Therefore $\quad \overline{B P_{2}}=\sum_{j=1}^{\infty} j \overline{X_{2}}(1-\alpha)^{j-1} \alpha=\frac{\overline{X_{2}}}{\alpha}=\frac{\overline{X_{2}}}{L_{B 2}\left(\lambda_{2}\right)}$

$$
\begin{align*}
L_{B P 2}(s) & =E\left\{e^{-s(B P 2)}\right\}=\sum_{n=1}^{\infty} L_{B 2}^{n}(s)(1-\alpha)^{n-1} \alpha=\left(\frac{\alpha}{1-\alpha}\right)\left(\frac{(1-\alpha) L_{B 2}(s)}{1-(1-\alpha) L_{B 2}(s)}\right) \tag{1}\\
& =\frac{L_{B 2}\left(\lambda_{2}\right) L_{B 2}(s)}{\left[1-L_{B 2}(s)\right]+L_{B 2}(s) L_{B 2}\left(\lambda_{2}\right)}
\end{align*}
$$

(d)

$$
\begin{align*}
\bar{T}= & \overline{X_{1}}+\lambda_{2} \overline{X_{1}}(\overline{B P 2})=\overline{X_{1}}\left(1+\frac{\rho_{2}}{L_{B 2}\left(\lambda_{2}\right)}\right)=\overline{X_{1}}\left(\frac{L_{B 2}\left(\lambda_{2}\right)+\rho_{2}}{L_{B 2}\left(\lambda_{2}\right)}\right) \tag{2}\\
L_{T}(s) & =E\left\{e^{-s T}\right\}=\sum_{n=0}^{\infty} E\left\{e^{-s X_{1}} L_{B P 2}^{n}(s) \frac{\left(\lambda_{2} X_{1}\right)^{n}}{n!} e^{-\lambda_{2} X_{1}}\right\} \\
& =E\left\{\sum_{n=0}^{\infty} e^{-\left(s+\lambda_{2}\right) X_{1}} \frac{\left[\lambda_{2} X_{1} L_{B P 2}(s)\right]^{n}}{n!}\right\} \\
& =E\left\{e^{-\left(s+\lambda_{2}-\lambda_{2} L_{B P 2}(s)\right] X_{1}}\right\} \\
& =L_{B 1}\left(s+\lambda_{2}-\lambda_{2} L_{B P 2}(s)\right)
\end{align*}
$$

Note that you can also obtain \bar{T} from $L_{T}(s)$
(e) In order to use the standard $\mathrm{M} / \mathrm{G} / 1$ result, note that $\rho=\lambda_{1} \bar{T}_{1}=\rho_{1}\left(\frac{L_{B 2}\left(\lambda_{2}\right)+\rho_{2}}{L_{B 2}\left(\lambda_{2}\right)}\right)$ and

$$
A(z)=L_{T}\left(\lambda_{1}-\lambda_{1} z\right)=L_{B 1}\left(\lambda_{1}-\lambda_{1} z+\lambda_{2}-\lambda_{2} L_{B P 2}\left(\lambda_{1}-\lambda_{1} z\right)\right)
$$

Therefore,

$$
\begin{equation*}
P_{1}(z)=\frac{(1-\rho)(1-z) L_{B 1}\left(\lambda_{1}-\lambda_{1} z+\lambda_{2}-\lambda_{2} L_{B P 2}\left(\lambda_{1}-\lambda_{1} z\right)\right)}{L_{B 1}\left(\lambda_{1}-\lambda_{1} z+\lambda_{2}-\lambda_{2} L_{B P 2}\left(\lambda_{1}-\lambda_{1} z\right)\right)-z} \tag{4}
\end{equation*}
$$

2. The flow balance equations for this system may be written as -

$$
\begin{aligned}
& \lambda_{1}=2 \Lambda+0.2 \lambda_{3}+0.5 \lambda_{2} \\
& \lambda_{2}=\Lambda+0.2 \lambda_{4} \\
& \lambda_{3}=0.5 \lambda_{1} \\
& \lambda_{4}=0.5 \lambda_{1}+0.5 \lambda_{2}
\end{aligned}
$$

(a) Traffic Vector for the queues $\bar{\rho}=\left(3.03 \frac{\Lambda}{\mu}, 0.725 \frac{\Lambda}{\mu}, 0.76 \frac{\Lambda}{\mu}, 2.24 \frac{\Lambda}{\mu}\right)$

Therefore, the system will be stable if $3.03 \frac{\Lambda}{\mu}<1$ or $\frac{\Lambda}{\mu}<0.33$
(b) For $\Lambda=0.3$ and $\mu=1$
$\lambda_{1}=0.908, \lambda_{2}=0.434, \lambda_{3}=0.455, \lambda_{4}=0.672 \& \rho_{1}=0.908, \rho_{2}=0.217, \rho_{3}=0.228, \rho_{4}=0.672$
(i) The mean transit delays through the queues may be found by using the corresponding
$\mathrm{M} / \mathrm{M} / 1$ expression. These are
The visit ratios to the queues are
Therefore, the mean transit time through the system will be $W_{\text {Ab.cD }}$ $=13.88$
[2] A
(ii) To find the mean transit delay for jobs entering the system at \mathbf{B}, set the flow entering from \mathbf{A} to zero. The network will then be as shown in the figure.

$$
\begin{array}{llll}
W_{1}=10.87 & W_{2}=0.639 & W_{3}=0.648 & W_{4}=3.049 \\
V_{1}=1.009 & V_{2}=0.482 & V_{3}=0.506 & V_{4}=0.747
\end{array}
$$

Then,

$$
\lambda_{1}=0.5 \lambda_{2}+0.2 \lambda_{3}, \lambda_{2}=0.3+0.2 \lambda_{4}, \lambda_{3}=0.5 \lambda_{1}, \lambda_{4}=0.5 \lambda_{1}+0.5 \lambda_{2}
$$

Therefore, $\quad \lambda_{1}=0.197, \lambda_{2}=0.355, \lambda_{3}=0.099, \lambda_{4}=0.276$
Visit Ratios $\quad V_{1}=0.657, \quad V_{2}=1.183, \quad V_{3}=0.33, V_{4}=0.92$
Using these with the queue delays calculated in (i) gives $\boldsymbol{W}_{B, C D}=10.916$
[3+3]
To find the mean delay for jobs entering from \mathbf{A}, we can repeat the same strategy setting the flow entering at \mathbf{B} to be zero in the original network. However, it would be much easier to use the following.

$$
\frac{0.6}{0.9} W_{A, C D}+\frac{0.3}{0.9} W_{B, C D}=W_{A B, C D}=13.88 \Rightarrow W_{A, C D}=15.36
$$

(iii) To do this, we first consider the network where jobs enter only from B and leave from either \mathbf{C} or \mathbf{D}, i.e. the same network as given above in the solution for (ii). We then reverse the network where the flows enter from C or D and leave through B. The reversed network will be as shown.

In this network, we now set the flow

entering from \mathbf{D} to be zero and consider only the flow entering from \mathbf{C}. (Note that this flow will only leave through B.) The flow equations then are -

$$
\lambda_{1}=\lambda_{3}+0.357 \lambda_{4} \quad \lambda_{2}=0.9 \lambda_{1}+0.643 \lambda_{4} \quad \lambda_{3}=0.079+0.1 \lambda_{1} \quad \lambda_{4}=0.155 \lambda_{2}
$$

Solving these, we get $\quad \lambda_{1}=0.093 \quad \lambda_{2}=0.093 \quad \lambda_{3}=0.088 \quad \lambda_{4}=0.014$
with Visit Ratios $\quad V_{1}=1.177 \quad V_{2}=1.177 \quad V_{3}=1.114 \quad V_{4}=0.177$
Therefore, the mean transit time $\boldsymbol{W}_{B, C}=14.16$

$$
\text { Note that } \quad \frac{0.079}{0.3} W_{B, C}+\frac{0.221}{0.3} W_{B, D}=W_{B, C D}=10.916 \Rightarrow W_{B, D}=9.756
$$

(Direct analysis gives $W_{B, D}=9.5$. The difference appears to be because of round-off errors.)
(c) Reversing the original network, will give the network shown.
[4]
Note: The numbers in blue give the actual flow values. The numbers in italics (black) give the corresponding routing probabilities

3. (a) Late Arrival Model

Considering the Imbedded Markov Chain at the customer departure instants with the usual notation-

$$
\begin{aligned}
n_{i+1} & =a_{i+1} & & n_{i}=0 \\
& =n_{i}+a_{i+1}-1 & & n_{i} \geq 1
\end{aligned} \quad \text { where } \quad ~ \begin{aligned}
& \bar{n}=p_{0} \bar{a}+\bar{n}+\left(1-p_{0}\right) \bar{a}-\left(1-p_{0}\right) \\
& \\
& p_{0}=1-\bar{a}=1-\lambda \bar{b}
\end{aligned}
$$

and

$$
P(z)=p_{0} A(z)+\frac{A(z)}{z}\left[P(z)-p_{0}\right] \quad \Rightarrow \quad P(z)=\frac{p_{0}(1-z) A(z)}{A(z)-z}
$$

with

$$
\begin{equation*}
A(z)=\sum_{j=1}^{\infty} b(j) \sum_{k=0}^{j}\binom{j}{k} \lambda^{k}(1-\lambda)^{j-k} z^{k}=\sum_{j=1}^{\infty} b(j)(1-\lambda+\lambda z)^{k}=B(1-\lambda+\lambda z) \tag{6}
\end{equation*}
$$

Differentiating and evaluating at $\mathrm{z}=1$, we get-

$$
A^{\prime}(1)=\lambda B^{\prime}(1)=\lambda \bar{b} \text { or } \lambda b^{(1)} \quad A^{\prime \prime \prime}(1)=\lambda^{2} B^{\prime \prime}(1)=\lambda^{2}\left(b^{(2)}-\bar{b}\right)
$$

Differentiating twice to calculate N,

$$
\begin{aligned}
& (A-z) P=p_{0}(1-z) A \\
& P^{\prime}(A-z)+P\left(A^{\prime}-1\right)=p_{0}(1-z) A^{\prime}-p_{0} A \\
& P^{\prime \prime}(A-z)+2 P^{\prime}\left(A^{\prime}-1\right)+P A^{\prime \prime}=p_{0}(1-z) A^{\prime \prime}-2 p_{0} A^{\prime}
\end{aligned}
$$

Evaluating the last expression for $z=1$,

$$
\begin{align*}
& 2 N(\lambda \bar{b}-1)+\lambda^{2}\left(b^{(2)}-\bar{b}\right)=-2 p_{0} \lambda \bar{b}=-2(1-\lambda \bar{b}) \lambda \bar{b} \\
& N=\frac{\lambda^{2}\left(b^{(2)}-\bar{b}\right)}{2(1-\lambda \bar{b})}+\lambda \bar{b} \tag{6}
\end{align*}
$$

(b) FCFS Queue

For the Late Arrival model, the number in the system as seen by a departing user would be the number arriving while that user was in the system. Let $g_{W}(k) \quad k=1, \ldots \ldots, \infty$ be the probability that the user spent k time slots in the system with $G_{W}(z)=\sum_{k=1}^{\infty} g_{W}(k) z^{k}$ as its generating function. Therefore,

$$
P(z)=\sum_{k=1}^{\infty} g_{W}(k) \sum_{j=0}^{k}\binom{k}{j} \lambda^{j}(1-\lambda)^{k-j} z^{j}=\sum_{k=1}^{\infty} g_{W}(k)(1-\lambda+\lambda z)^{k}=G_{W}(1-\lambda+\lambda z)
$$

Note that in the Early Arrival model, a customer spending the same amount of time in the system (as for the Late Arrival model) will count arrivals in one less slot on departure. Therefore,

$$
\tilde{P}(z)=\sum_{k=1}^{\infty} g_{W}(k) \sum_{j=0}^{k-1}\binom{k-1}{j} \lambda^{j}(1-\lambda)^{k-1-j} z^{j}=\sum_{k=1}^{\infty} g_{W}(k)(1-\lambda+\lambda z)^{k-1}=\frac{G_{W}(1-\lambda+\lambda z)}{(1-\lambda+\lambda z)}
$$

Therefore,

$$
\begin{equation*}
\tilde{P}(z)=\frac{P(z)}{(1-\lambda+\lambda z)} \tag{8}
\end{equation*}
$$

