EE 633, Queueing Systems Final Examination (2012-2013S) Solutions

1. (a) Let the *Effective Service Time Distribution* (Laplace Transform) of a job entering the system (from outside) be $L_{B*}(s)$.

Therefore
$$L_{B^*}(s) = \sum_{k=1}^{\infty} pL_B(s) [qL_B(s)]^{k-1} = \frac{pL_B(s)}{1 - qL_B(s)}$$

with Mean Effective Service Time
$$\overline{X^*} = \sum_{k=1}^{\infty} pq^{k-1}(k\overline{X}) = \frac{p\overline{X}}{(1-q)^2} = \frac{\overline{X}}{p}$$

where \overline{X} is the mean service time in the actual queue.

Effective Traffic =
$$\rho^* = \lambda \overline{X^*} = \frac{\lambda X}{p} = \frac{\rho}{p}$$
 where $\rho = \lambda \overline{X}$

Following the analysis of an M/G/1 queue (and considering the whole system as a M/G/1 queue with the effective service time distribution $L_{B^*}(s)$ as given earlier), we get –

$$P_{B}(z) = p_{0} \frac{(1-z)L_{B^{*}}(\lambda - \lambda z)}{L_{B^{*}}(\lambda - \lambda z) - z} \quad \text{with } p_{0} = 1 - \rho^{*}$$

Simplifying this gives,

$$P_B(z) = (p - \rho) \frac{(1 - z)L_B(\lambda - \lambda z)}{(p + qz)L_B(\lambda - \lambda z) - z}$$
[5]

(b) For point A, the Markov chain may be written at the departure instants with n_i as the number seen left behind in the system by the i^{th} departure.

For
$$n_i=0$$
 $n_{i+1}=a_{i+1}$ probability = p $= a_{i+1} + 1$ probability = qFor $n_i \ge 1$ $n_{i+1}=n_i+a_{i+1}-1$ probability = p $= n_i+a_{i+1}$ probability = q

Therefore, (with $A(z)=E[z^{\alpha}]$, note that $A(z)=L_{B}(\lambda - \lambda z)$)

$$P_{A}(z) = A(z)p_{A0}[p+qz] + A(z)pz^{-1}[P_{A}(z) - p_{A0}] + A(z)q[P_{A}(z) - p_{A0}]$$
$$P_{A}(z) = p_{A0}\frac{(1-z)(p+qz)A(z)}{[(p+qz)A(z) - z]}$$

Directly taking means of the LHS and RHS of the Markov Chain expressions at equilibrium and using $E\{n_i\} = E\{n_{i+1}\} = N$ and $E\{a_{i+1}\} = \lambda \overline{X} = \rho$, we get

$$N = N + \lambda X + p_{A0}q - (1 - p_{A0})p \qquad \Rightarrow p_{A0} = p - \rho$$
$$0 = \rho + p_{A0} - p \qquad \Rightarrow p_{A0} = p - \rho$$

Therefore $P_A(z) = (p-\rho) \frac{(1-z)(p+qz)A(z)}{[(p+qz)A(z)-z]} = (p-\rho) \frac{(1-z)(p+qz)L_B(\lambda-\lambda z)}{[(p+qz)L_B(\lambda-\lambda z)-z]}$ [5]

- 2. A State Transition Diagram for this system is given below. Note that states 2, 3,...∞ are normally defined. The other states are defined as follows
 - {1,A} one customer in the system, Server A working
 - {1,B} one customer in the system, Server B working
 - {0,A} system empty, Server A idle for longer time than Server B
 - {0,B} system empty, Server B idle for longer time than Server A

Solving the balance equations for this we get -

$$p_{0A} = p_{0B} = \frac{\mu_A \mu_B}{\lambda^2} p_2 \qquad p_{1A} = \frac{\mu_B}{\lambda} p_2 \qquad p_{1B} = \frac{\mu_A}{\lambda} p_2$$

$$p_n = \left(\frac{\lambda}{\mu_A + \mu_B}\right)^{n-2} p_2 \qquad n = 2, 3, 4, \dots$$
[5]

The normalization condition will then give

$$p_{2} = \frac{1}{\left(2\frac{\mu_{A}\mu_{B}}{\lambda^{2}} + \frac{\mu_{A} + \mu_{B}}{\lambda} + \frac{\mu_{A} + \mu_{B}}{\mu_{A} + \mu_{B} - \lambda}\right)}$$

Using p_2 from above, the required probabilities in terms of p_2 are –

$$p_{0} = 2 \frac{\mu_{A} \mu_{B}}{\lambda^{2}} p_{2}$$

$$p_{1} = \frac{\mu_{A} + \mu_{B}}{\lambda} p_{2}$$

$$p_{n} = \left(\frac{\lambda}{\mu_{A} + \mu_{B}}\right)^{n-2} p_{2} \qquad n = 2,3,4,....$$
[2]

3. (a) Let P_B be the probability of blocking and $\rho = \lambda \overline{X}$ Then $p_0 = 1 - \rho(1 - P_B)$ and also $p_0 = 1 - P_B$ Therefore, $1 - P_B = \frac{1}{1 + \rho}$ or $P_B = \frac{\rho}{1 + \rho} = \frac{\lambda \overline{X}}{1 + \lambda \overline{X}}$ [2]

Mean Length of Idle Period $\overline{I} = \frac{K}{\lambda} = \frac{K\overline{X}}{\rho}$ (i) In one busy-idle cycle, (b) Let

Mean Length of Busy Period = \overline{BP}

Then

$$\overline{BP} = \overline{X} + \Delta + \lambda \left(\overline{X} + \Delta\right) \left(\frac{\overline{X}}{1 - \rho}\right) + (K - 1) \left[\overline{X} + \lambda \overline{X} \left(\frac{\overline{X}}{1 - \rho}\right)\right]$$

$$= \frac{K\overline{X} + \Delta}{1 - \rho}$$
and $\overline{T}_{cycle} = \overline{I} + \overline{BP} = \frac{K\overline{X}}{\rho} + \frac{K\overline{X} + \Delta}{1 - \rho} = \frac{K\overline{X} + \rho\Delta}{\rho(1 - \rho)}$
Therefore P{Server Busy} = $\frac{\overline{BP}}{\overline{I} + \overline{BP}} = \frac{K\rho + \lambda\Delta}{K + \lambda\Delta}$ or $\frac{(K\overline{X} + \Delta)\rho}{(K\overline{X} + \rho\Delta)}$ [5]
(ii) P{system empty} = $\frac{\frac{1}{\lambda}}{\overline{I} + \overline{BP}} = \frac{\overline{X}(1 - \rho)}{K\overline{X} + \rho\Delta}$ [3]

Utilizing the symmetry of the network, it is evident that $\lambda_1 = \lambda_3$ and $\lambda_2 = \lambda_4$ 4. $\lambda_1 = \lambda + 0.5\lambda_2$ and $\lambda_1 = \lambda_2$ Also $\lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = 2\lambda$ Therefore $\tilde{\lambda} = (2\lambda, 2\lambda, 2\lambda, 2\lambda)$ $\tilde{\rho} = (2\rho, \rho, \rho, 2\rho)$ $\tilde{V} = (1, 1, 1, 1)$

(a) For system to be stable, we need $2\rho < 1$ or $\rho < 0.5$ or $\lambda < 0.5\mu$ [2]

 $\tilde{\lambda} = (0.2, 0.2, 0.2, 0.2) \qquad \tilde{\rho} = (0.2, 0.1, 0.1, 0.2)$ (b) $\tilde{N} = (0.25, 0.1111, 0.1111, 0.25)$ $\tilde{W} = (1.25, 0.5556, 0.5556, 1.25)$

Therefore Mean Transit Time = 3.6111 [3]

(c) Set $\lambda_{B}=0$ (Note that the symmetry used earlier can no longer be used)

$$\begin{split} \lambda_3 &= 0.5\lambda_4 \quad \lambda_4 = 0.5\lambda_3 + 0.5\lambda_1 \quad \Rightarrow \quad \lambda_3 = \frac{1}{3}\lambda_1 \quad \lambda_4 = \frac{2}{3}\lambda_1 \\ \lambda_2 &= 0.5\lambda_3 + 0.5\lambda_1 = \frac{2}{3}\lambda_1 \\ \lambda_1 &= \lambda + 0.5\lambda_2 \quad \lambda_1 = \lambda + \frac{1}{3}\lambda_1 \quad \lambda_1 = 1.5\lambda = 0.15 \\ \tilde{\lambda} &= (0.15, 0.1, 0.05, 0.1) \qquad \tilde{V} = (1.5, 1, 0.5, 1) \end{split}$$

Mean Transit Time for jobs entering from A =3.9584 [5] 5. (a) Since Q4 is the designated sub-network, for computation of the FES, we need to redraw the network with Q4 shorted. We then compute *T*(*j*) as the throughput through that short for *j*=1,2,...,*M* where *j* is the number of jobs circulating in the network. (Note *M*=4)

Choose Q1 as the reference queue

$$\begin{split} \lambda_1 &= 0.5\lambda_2 + 0.5[0.5\lambda_1 + 0.5\lambda_3] \\ \lambda_2 &= 0.5\lambda_1 + 0.5\lambda_3 \end{split} \qquad \begin{array}{l} 0.75\lambda_1 &= 0.5\lambda_2 + 0.25\lambda_3 \\ 0.5\lambda_1 &= \lambda_2 - 0.5\lambda_3 \end{array}$$

 $\begin{array}{lll} \mbox{Therefore} & \lambda_2 = \lambda_3 = \lambda_1 & \mbox{and} & T(j) = 0.5\lambda_1 + 0.5\lambda_2 = \lambda_1 \\ \mbox{Choosing Q1 as the} & \mbox{reference queue with } \lambda_1 = \mu \ , \mbox{ we get } - \end{array}$

	$W_1(1) = 1$ $W_2(1) = 0.5$ $W_3(1) = 0.5$	$\lambda = \frac{1}{2} = 0.5$
<i>m</i> =1	$\lambda_1^*(1) = 0.5$ $\lambda_2^*(1) = 0.5$ $\lambda_3^*(1) = 0.5$	
	$N_1(1) = 0.5$ $N_2(1) = 0.25$ $N_3(1) = 0.25$	

	$W_1(2) = 1.5$ $W_2(2) = 0.625$ $W_3(2) = 0.625$	$\lambda = 0.7273$
<i>m</i> =2	$\lambda_1^*(2) = 0.7273$ $\lambda_2^*(2) = 0.7273$ $\lambda_3^*(2) = 0.7273$	
	$N_1(2) = 1.091$ $N_2(2) = 0.4546$ $N_3(2) = 0.4546$	

$$W_{1}(3) = 2.091 \quad W_{2}(3) = 0.7273 \quad W_{3}(3) = 0.7273 \qquad \lambda = 0.8461$$

m=3
$$\lambda_{1}^{*}(3) = 0.8461 \quad \lambda_{2}^{*}(3) = 0.8461 \quad \lambda_{3}^{*}(3) = 0.8461$$

$$N_{1}(3) = 1.7692 \quad N_{2}(3) = 0.6154 \quad N_{3}(3) = 0.6154$$

$$W_{1}(4) = 2.7692 \quad W_{2}(4) = 0.8077 \quad W_{3}(4) = 0.8077 \quad \lambda = 0.9123$$

m=4=M
$$\lambda_{1}^{*}(4) = 0.9123 \quad \lambda_{2}^{*}(4) = 0.9123 \quad \lambda_{3}^{*}(4) = 0.9123$$

$$N_{1}(4) = 2.5263 \quad N_{2}(4) = 0.7369 \quad N_{3}(4) = 0.7369$$

The State Dependent Service Rates for the T(j)

T(1)=0.5T(2)=0.7273[5]T(3)=0.8461T(4)=0.9123

 $N_{FES} + N_{Q4} = 4$

Q4

μ

The corresponding balance equations can be written to solve for the system state probabilities.

 $\begin{array}{ll} 0.5\,p_{13}=p_{04} & p_{13}=2\,p_{04} \\ 0.7273\,p_{22}=p_{13} & p_{22}=2.7499\,p_{04} \\ 0.8461\,p_{31}=p_{22} & p_{31}=3.25\,p_{04} \\ 0.9123\,p_{40}=p_{31} & p_{04}=3.5624\,p_{04} \end{array}$

Since $p_{04} + p_{13} + p_{22} + p_{31} + p_{40} = 1$, we get –

$$P_{4} = p_{04} = 0.0796$$

$$P_{3} = p_{13} = 0.1592$$

$$P_{2} = p_{22} = 0.2189$$

$$P_{1} = p_{31} = 0.2587$$

$$P_{0} = p_{40} = 0.2836$$
[5]