EEE33 Queueing Systems (2011-12)
 Mid Term Examination Solutions

1. (a) States $2,3, \ldots \ldots .$. are defined normally. The other states are defined as follows.
$\{1, A\}$ one customer in the system, Server A working
$\{1, B\}$ one customer in the system, Server B working
$\{0, A\}$ system empty, Server A idle for less time than Server B
$\{0, B\}$ system empty, Server B idle for less time than Server A

(b) $\quad p_{1 B}=\frac{\lambda}{\mu_{B}} p_{0 B} \quad p_{1 A}=\frac{\lambda}{\mu_{A}} p_{0 A} \quad p_{n}=\left(\frac{\lambda}{\mu_{A}+\mu_{B}}\right)^{n-2} p_{2} \quad n=2,3,4, \ldots \ldots .$.
$p_{2}=\frac{\lambda}{\mu_{A}+\mu_{B}}\left(p_{1 A}+p_{1 B}\right) \quad \sum_{n=2}^{\infty} p_{n}=\frac{\mu_{A}+\mu_{B}}{\mu_{A}+\mu_{B}-\lambda} p_{2}$
$\left(\lambda+\mu_{A}\right) p_{1 A}=\mu_{B} p_{2}+p_{0 A} \lambda \quad\left(\lambda+\mu_{B}\right) p_{1 B}=\mu_{A} p_{2}+p_{0 B} \lambda$
$p_{1 A}=\frac{\mu_{B}}{\lambda} p_{2} \quad p_{0 A}=\frac{\mu_{A} \mu_{B}}{\lambda^{2}} p_{2} \quad p_{1 B}=\frac{\mu_{A}}{\lambda} p_{2} \quad p_{0 B}=\frac{\mu_{A} \mu_{B}}{\lambda^{2}} p_{2}$
$p_{n}=\left(\frac{\lambda}{\mu_{A}+\mu_{B}}\right)^{n-2} p_{2} \quad n=2,3,4, \ldots$.

Therefore,

$$
p_{2}=\frac{1}{\left(2 \frac{\mu_{A} \mu_{B}}{\lambda^{2}}+\frac{\mu_{A}+\mu_{B}}{\lambda}+\frac{\mu_{A}+\mu_{B}}{\mu_{A}+\mu_{B}-\lambda}\right)}
$$

and

$$
p_{0}=\frac{2 \mu_{A} \mu_{B}}{\lambda^{2}} p_{2} \quad p_{1}=\frac{\mu_{A}+\mu_{B}}{\lambda} p_{2} \quad p_{n}=\left(\frac{\lambda}{\mu_{A}+\mu_{B}}\right)^{n-2} p_{2} \quad n=2,3,4, \ldots
$$

2. (a) $L_{B}(s)=0.5 L_{2 B}(s)+0.25 L_{1 B}(s)+0.25 L_{1 B}(s) L_{B}(s)$

$$
\text { where } L_{1 B}(s)=L_{2 B}(s)=\frac{\mu}{s+\mu}
$$

Therefore,

$$
L_{B}(s)=\frac{0.5 L_{2 B}(s)+0.25 L_{1 B}(s)}{1-0.25 L_{1 B}(s)}=\frac{0.75 \mu}{s+0.75 \mu}
$$

(b) Note that the service time is exponentially distributed with parameter 0.75μ Therefore,

Mean $=\frac{1}{0.75 \mu}=\frac{4}{3 \mu}$
and
Second Moment $=\frac{2}{(0.75 \mu)^{2}}=\frac{32}{9 \mu^{2}}$
(Used the fact that an exponential distribution has mean \bar{X} and second moment $\overline{x^{2}}=2(\bar{x})^{2}$. One can also find the second moment directly or from the Laplace Transform of the pdf.)
(c) State Transition Diagram for the usual definition of system states (n, j)

3. Considering an Idle-Busy cycle, the following three cases may arise-
(i) Two vacations followed by an idle,

Probability $=f_{0}^{2}$
(ii) Two vacations, Probability $=f_{0} f_{j} \quad j=1,2$, Total Probability $=f_{0}\left(1-f_{0}\right)$
(iii) One vacation, Probability $=f_{j} \quad j=1,2, \ldots \ldots \ldots$.

Total Probability $=\left(1-f_{0}\right)$
(a) Using $f_{0}=L_{V}(\lambda)$

$$
\begin{aligned}
\overline{I P} & =f_{0}^{2}\left(2 \bar{V}+\frac{1}{\lambda}\right)+f_{0}\left(1-f_{0}\right)(2 \bar{V})+\left(1-f_{0}\right) \bar{V} \\
& =f_{0}^{2} \frac{1}{\lambda}+f_{0} \bar{V}+\bar{V}=\frac{1}{\lambda}\left(f_{0}^{2}+\lambda \bar{V}\left(1+f_{0}\right)\right)
\end{aligned}
$$

(b)

$$
\begin{aligned}
\overline{B P} & =f_{0}^{2}\left(\frac{\bar{X}}{1-\lambda \bar{X}}\right)+\left(1+f_{0}\right) \sum_{j=1}^{\infty}\left(\frac{\bar{X}}{1-\lambda \bar{X}}\right) j f_{j} \\
& =\left(\frac{\bar{X}}{1-\lambda \bar{X}}\right)\left[f_{0}^{2}+\lambda \bar{V}\left(1+f_{0}\right)\right]
\end{aligned}
$$

$$
\text { P\{server idle }\}=\frac{\overline{I P}}{\overline{I P}+\overline{B P}}=1-\lambda \bar{X}=1-\rho
$$

(c) Mean Residual Time $=R=\lim _{t \rightarrow \infty}\left[\frac{1}{t} \sum_{i=1}^{M(t)} \frac{X_{i}^{2}}{2}+\frac{1}{t} \sum_{i=1}^{L(t)} \frac{V_{i}^{2}}{2}\right]$

$$
R=\frac{1}{2} \lambda \overline{X^{2}}+\frac{(1-\rho)\left(1+f_{0}\right)}{\left(f_{0}^{2}+\lambda \bar{V}\left(1+f_{0}\right)\right)}\left(\frac{1}{2} \lambda \overline{V^{2}}\right)
$$

(d) For the imbedded Markov Chain, we can write the following -

$$
\begin{array}{rlrl}
n_{i+1} & =n_{i}+a_{i+1}-1 & & n_{i} \geq 1 \\
& =a_{i+1}+j-1 & & n_{i}=0, j=1,2, \ldots \ldots . . . \\
& =a_{i+1} & & \text { Equilib. Prob.: } p_{n} \\
n_{i}=0, j=0 & & \text { Equilib. Prob.: Prob.: } p_{0}\left(1+f_{0} f_{0}^{2}\right) f_{j}
\end{array}
$$

for j arrivals in the a vacation interval with probability $f_{j} j=0,1,2, \ldots . . .$.
Taking expectations of both sides of the above, we get

$$
\begin{aligned}
\bar{n} & =\bar{n}+\lambda \bar{X}-\left(1-p_{0}\right)+p_{0}\left(\sum_{j=1}^{\infty}(j-1) f_{j}\left(1+f_{0}\right)\right) \\
& =\bar{n}+\lambda \bar{X}-\left(1-p_{0}\right)+p_{0}\left(1+f_{0}\right)\left(\lambda \bar{V}-\left(1-f_{0}\right)\right) \\
& =\bar{n}+\lambda \bar{X}-1+p_{0}\left[\left(1+f_{0}\right)\left(\lambda \bar{V}-1+f_{0}\right)+1\right] \\
p_{0} & =\frac{1-\lambda \bar{X}}{\left(\left(1+f_{0}\right) \lambda \bar{V}+f_{0}^{2}\right)}
\end{aligned}
$$

and using $A(z)=L_{B}(\lambda-\lambda z) \quad F(z)=L_{V}(\lambda-\lambda z) \quad f_{0}=L_{V}(\lambda)$

$$
\begin{aligned}
P(z) & =A(z)\left[\frac{1}{z}\left(P(z)-p_{0}\right)+p_{0}\left(1+f_{0}\right) E\left\{z^{j-1}\right\}+p_{0} f_{0}^{2}\right] \\
& =A(z)\left[\frac{1}{z}\left(P(z)-p_{0}\right)+p_{0} \frac{\left(1+f_{0}\right)}{z}\left(F(z)-f_{0}\right)+p_{0} f_{0}^{2}\right]
\end{aligned}
$$

Therefore,

$$
P(z)=p_{0} \frac{A(z)\left(1-\left(1+f_{0}\right)\left(F(z)-f_{0}\right)-f_{0}^{2} z\right)}{A(z)-z}=p_{0} \frac{A(z)\left(\left(1-f_{0}^{2} z\right)-\left(1+f_{0}\right)\left(F(z)-f_{0}\right)\right)}{A(z)-z}
$$

Note that to do a sanity check, we can compare this result for infinitesimally small vacation lengths with a normal M/G/1 queue.

