EEE33 Queueing Systems (2011-12)
 Final Examination

Time: 3 hours

1. (a) For the class 2 jobs, we can consider the system to be a simple $M / G / 1 / 2$ system and solve for the state probabilities accordingly.

Considering the queue only for the Class $\mathbf{2}$ customers -

State probabilities at departure instants $\quad p_{d i} i=0,1$
State probabilities at arrival instants of those arrivals which actually enter the system

$$
p_{a c i} i=0,1
$$

State probabilities at arrival instants (all arrivals) $p_{a i} i=0,1,2$
Equilibrium State Probabilities $p_{i} i=0,1,2 \quad\left(\right.$ Note $\left.P_{B}=p_{2}\right)$
Transition probabilities at departure instants $p_{d, j k} j=0,1$ and $k=0,1$

$$
p_{d, 00}=L_{B 2}\left(\lambda_{2}\right) \quad p_{d, 10}=L_{B 2}\left(\lambda_{2}\right) \quad p_{d, 01}=1-L_{B 2}\left(\lambda_{2}\right) \quad p_{d, 11}=1-L_{B 2}\left(\lambda_{2}\right)
$$

Balance Equation

$$
p_{d 0}=p_{d 0} L_{B 2}\left(\lambda_{2}\right)+p_{d 1} L_{B 2}\left(\lambda_{2}\right) \text { and } p_{d 0}+p_{d 1}=1
$$

Therefore,

$$
p_{d 0}=L_{B 2}\left(\lambda_{2}\right) \quad p_{d 1}=1-L_{B 2}\left(\lambda_{2}\right)
$$

Using Kleinrock's Principle, $p_{a c 0}=L_{B 2}\left(\lambda_{2}\right) \quad p_{a c 1}=1-L_{B 2}\left(\lambda_{2}\right)$
Assuming $P_{B 2}$ as the blocking probability, we get -

$$
p_{a 0}=\left(1-P_{B 2}\right) p_{a c 0}=\left(1-P_{B 2}\right) L_{B 2}\left(\lambda_{2}\right) \quad p_{a 1}=\left(1-P_{B 2}\right) p_{a c 1}=\left(1-P_{B 2}\right)\left(1-L_{B 2}\left(\lambda_{2}\right)\right) \quad p_{a 2}=P_{B 2}
$$

Using PASTA $p_{i}=p_{a i} \quad i=0,1,2$

Traffic actually offered to the queue $=\rho_{c 2}=\rho_{2}\left(1-P_{B 2}\right)$ with $\rho_{2}=\lambda_{2} \bar{X}_{2}$

$$
\begin{gathered}
\text { Therefore } \left.\left.\begin{array}{c}
p_{0}=1-\rho_{2}\left(1-P_{B 2}\right)=\left(1-P_{B 2}\right) L_{B 2}\left(\lambda_{2}\right) \\
p_{0}=\frac{L_{B 2}\left(\lambda_{2}\right)}{L_{B 2}\left(\lambda_{2}\right)+\rho_{2}} \\
p_{1}=\frac{1-L_{B 2}\left(\lambda_{2}\right)}{L_{B 2}\left(\lambda_{2}\right)+\rho_{2}} \\
p_{2}=P_{B 2}=\frac{\left.L_{B 2} \lambda_{2}\right)+\rho_{2}-1}{L_{B 2}\left(\lambda_{2}\right)+\rho_{2}}
\end{array}\right\} \quad \begin{array}{l}
\text { or } P_{B 2}=\frac{L_{B 2}\left(\lambda_{2}\right)+\rho_{2}-1}{L_{B 2}\left(\lambda_{2}\right)+\rho_{2}} \\
\end{array}\right\} \begin{array}{l}
\text { State Probabilities } \\
\text { for Class } 2 \text { iobs }
\end{array} \\
\hline
\end{gathered}
$$

(b) Let $\alpha=\mathrm{P}$ \{no Class 2 arrivals in a Class 2 service time $\}$

$$
=\int_{0}^{\infty} e^{-\lambda_{2} x} b_{2}(x) d x=L_{B 2}\left(\lambda_{2}\right)
$$

$\overline{B P 2}=\sum_{j=1}^{\infty} j \overline{X_{2}} \alpha(1-\alpha)^{j-1}=\frac{\overline{X_{2}}}{\alpha}=\frac{\overline{X_{2}}}{L_{B 2}\left(\lambda_{2}\right)}$
and
$L_{B P 2}(s)=\mathrm{E}\left\{e^{-s(B P 2)}\right\}=\sum_{n=1}^{\infty} L_{B 2}^{n}(s)(1-\alpha)^{n-1} \alpha=\left(\frac{\alpha}{1-\alpha}\right) \frac{(1-\alpha) L_{B 2}(s)}{1-(1-\alpha) L_{B 2}(s)}$
Therefore $\quad L_{B P 2}(s)=\frac{L_{B 2}\left(\lambda_{2}\right) L_{B 2}(s)}{1-\left[1-L_{B 2}\left(\lambda_{2}\right)\right] L_{B 2}(s)}=\frac{L_{B 2}\left(\lambda_{2}\right) L_{B 2}(s)}{\left[1-L_{B 2}(s)\right]+L_{B 2}\left(\lambda_{2}\right) L_{B 2}(s)}$
Note that we can also get $\overline{B P 2}$ by differentiating the above and evaluating it at $s=0$ (add a minus sign!)
(c) $\bar{T}=\overline{X_{1}}+\lambda_{2} \overline{X_{1}}(\overline{B P 2})=\overline{X_{1}}\left(1+\frac{\rho_{2}}{L_{B 2}\left(\lambda_{2}\right)}\right)$
and

$$
\begin{aligned}
L_{T}(s) & =E\left\{e^{-s T}\right\}=\sum_{n=0}^{\infty} E\left\{e^{-s X_{1}} L_{B P 2}^{n}(s) \frac{\left(\lambda_{1} X_{1}\right)^{n}}{n!} e^{-\lambda_{1} X_{1}}\right\} \\
& =E\left\{\sum_{n=0}^{\infty} e^{-\left(s+\lambda_{1}\right) X_{1}} \frac{\left(\lambda_{1} X_{1} L_{B P 2}(s)\right)^{n}}{n!}\right\} \\
& =E\left\{e^{-\left(s+\lambda_{1}-\lambda_{1} L_{B P 2}(s)\right) X_{1}}\right\} \\
& =L_{B 1}\left(s+\lambda_{1}-\lambda_{1} L_{B P 2}(s)\right)
\end{aligned}
$$

2. Representing the system state as (n_{H}, n_{L}), we can draw the state transition diagram of the system as shown below.
(a)

$p_{10}\left(\lambda_{L}+\mu_{H}\right)=p_{0} \lambda_{H}$

$$
p_{10}=\frac{\lambda_{H}}{\lambda_{L}+\mu_{H}} p_{0}
$$

$\left(\lambda_{L}+\lambda_{H}\right) p_{0}=p_{01} \mu_{L}+p_{10} \mu_{H} \quad p_{01}=\rho_{L}\left(1+\frac{\lambda_{H}}{\lambda_{L}+\mu_{H}}\right) p_{0}$
Define $P_{0 x}=\sum_{i=1}^{\infty} p_{0 i}$ and $P_{1 x}=\sum_{i=0}^{\infty} p_{1 i} \quad \Rightarrow \quad p_{0}+P_{0 x}+P_{1 x}=1$
$\left.\begin{array}{l}p_{01}=\rho_{L}\left(p_{0}+p_{10}\right) \\ p_{02}=\rho_{L}\left(p_{01}+p_{11}\right) \\ p_{03}=\rho_{L}\left(p_{02}+p_{12}\right) \\ \ldots \ldots\end{array}\right\}$
$P_{0 x}=\rho_{L}\left(P_{0 x}+P_{1 x}\right)+\rho_{L} p_{0}$
$P_{0 x}=\frac{\rho_{L}}{1-\rho_{L}}\left(P_{1 x}+p_{0}\right)=\frac{\rho_{L}}{1-\rho_{L}}\left(1-P_{0 x}\right) \quad$ or $\quad P_{0 x}=\rho_{L}$
$\lambda_{H}\left(p_{0}+p_{01}+p_{02}+\ldots \ldots \ldots.\right)=\mu_{H}\left(p_{10}+p_{11}+\ldots \ldots \ldots \ldots ..\right)$
$P_{1 x}=\rho_{H}\left(p_{0}+P_{0 x}\right)=\rho_{H}\left(1-P_{1 x}\right) \quad$ or $\quad P_{1 x}=\frac{\rho_{H}}{1+\rho_{H}}$
and $\quad p_{0}=\frac{1}{\left(1+\rho_{H}\right)}-\rho_{L}$
(b) $\mathrm{P}\{$ server is idle $\}=p_{0}=\frac{1}{\left(1+\rho_{H}\right)}-\rho_{L}$
(c) $\mathrm{P}\{$ Blocking for high priority jobs $\}=P_{1 x}=\frac{\rho_{H}}{1+\rho_{H}}$
(d) $P\{$ finding one job in system $\}=p_{01}+p_{10}$

$$
\begin{aligned}
& =\left(\rho_{L}+\left(1+\rho_{L}\right) \frac{\lambda_{H}}{\lambda_{L}+\mu_{H}}\right) p_{0}=\left(\frac{\lambda_{H}+\rho_{L}\left(\lambda_{H}+\lambda_{L}+\mu_{H}\right)}{\left(\lambda_{L}+\mu_{H}\right)}\right) p_{0} \\
& =\left(\frac{\lambda_{H}+\rho_{L}\left(\lambda_{H}+\lambda_{L}+\mu_{H}\right)}{\left(\lambda_{L}+\mu_{H}\right)}\right)\left(\frac{1}{\left(1+\rho_{H}\right)}-\rho_{L}\right)
\end{aligned}
$$

3. (a) L.T. of batch service time pdf

Mean of batch service time

$$
\begin{aligned}
& L_{B}(s)=0.5 L_{\alpha}(s)\left[1+L_{\beta}(s)\right] \\
& \bar{X}=\alpha(1)+0.5 \beta(1) \\
& \overline{X^{2}}=(\alpha(2)+\alpha(1) \beta(1)+0.5 \beta(2)) \\
& \rho=\lambda \bar{X}=\lambda[\alpha(1)+0.5 \beta(1)]
\end{aligned}
$$

Offered Traffic

For a batch considered as one job, we get -
L.T.of the pdf of batch queueing delay $\quad L_{W q b}(s)=\frac{s(1-\rho)}{s-\lambda+\lambda L_{B}(s)}$

Mean batch queueing delay

$$
W_{q b}=\frac{\lambda \overline{X^{2}}}{2(1-\rho)}
$$

Therefore,
Mean queueing delay

$$
W_{q}=W_{q b}+\frac{1}{3} \alpha(1)
$$

L.T. of the pdf of the queueing delay

$$
L_{W_{q}}(s)=\frac{1}{3} L_{W_{q b}}(s)\left[2+L_{\alpha}(s)\right]
$$

(b) Mean Queueing Delay for the second job in the batch $=W_{q 2}=W_{q b}+\alpha(1)$
4. The flow balance equations are as follows.

$$
\begin{aligned}
& \lambda_{1}=\lambda+\lambda_{3}+\lambda_{4} \\
& \lambda_{2}=0.5\left[0.5 \lambda_{1}+0.1 \lambda_{2}\right]=0.25 \lambda_{1}+0.05 \lambda_{2} \quad \Rightarrow \lambda_{1}=3.8 \lambda_{2} \\
& \lambda_{3}=2 \lambda+\lambda_{2} \quad \lambda_{4}=0.4 \lambda_{2}
\end{aligned}
$$

Therefore, $\quad 3.8 \lambda_{2}=\lambda+2 \lambda+\lambda_{2}+0.4 \lambda_{2} \quad \lambda_{2}=1.25 \lambda$

$$
\tilde{\lambda}=(4.75 \lambda, 1.25 \lambda, 3.25 \lambda, 0.5 \lambda) \text { and } \tilde{\rho}=(4.75 \rho, 2.5 \rho, 6.5 \rho, 0.5 \rho) \text { for } \rho=\lambda / \mu
$$

(a) For system to be stable, we need $6.5 \rho<1$ or $\lambda<0.1538 \mu$
(b) For $\lambda=0.1$ and $\mu=1$, we have

$$
\begin{array}{ll}
\tilde{\lambda}=(0.475,0.125,0.325,0.05) & \tilde{\rho}=(0.475,0.25,0.65,0.05) \\
\tilde{N}=(0.905,0.333,1.857,0.053) &
\end{array}
$$

Total Number in system $=3.148$
Therefore, Mean Time spent in System $=3.148 / 0.3=10.49$
The individual delays through Q1-Q4 are given below (useful later in (c))

$$
\tilde{W}=(1.9053,2.66666,5.71385,1.06)
$$

(c) For $\lambda=0.1$ and $\mu=1$, we set the input from \mathbf{A} to zero (i.e. only considering the inputs from \mathbf{B}) and calculate the corresponding flows for each queue using flow balance

$$
\lambda_{1}=\lambda_{3}+\lambda_{4}
$$

$$
\lambda_{2}=0.5\left[0.5 \lambda_{1}+0.1 \lambda_{2}\right]=0.25 \lambda_{1}+0.05 \lambda_{2} \quad \Rightarrow \quad \lambda_{1}=3.8 \lambda_{2}
$$

$$
\lambda_{3}=0.2+\lambda_{2} \quad \lambda_{4}=0.4 \lambda_{2}
$$

Therefore, $\quad 3.8 \lambda_{2}=0.2+\lambda_{2}+0.4 \lambda_{2} \quad \lambda_{2}=0.2 / 2.4=0.08333$

$$
\tilde{\lambda}=(0.31667,0.08333,0.28333,0.033333)
$$

Visit Ratios: $\quad \tilde{V}=(1.58333,0.41667,1.41667,0.16667)$

Mean Transit Time for Job entering at $\mathrm{B}=\sum_{i=1}^{4} V_{i} W_{i}=12.39909$
5. (a) Since Q4 is the designated sub-network, for computation of the FES, we need to redraw the network with Q 4 shorted. We then compute $T(j)=0.5 \lambda_{2}{ }^{*}(j)$ as the throughput through that short for $j=1,2, \ldots, M$ where j is the number of jobs circulating in the network. (Note $M=4$)
$\lambda_{1}=\lambda_{3}+0.5 \lambda_{2} \quad \lambda_{2}=\lambda_{3}=0.5\left[\lambda_{1}+0.5 \lambda_{2}\right]$
Therefore $\quad \lambda_{2}=\lambda_{3}=\frac{2}{3} \lambda_{1}$
Choosing Q1 as the reference queue with $\lambda_{1}=\mu$, we get -

Relative Throughputs $\quad \lambda_{1}=\mu \quad \lambda_{2}=\frac{2}{3} \mu \quad \lambda_{3}=\frac{2}{3} \mu$

Visit Ratios

$$
V_{1}=1 \quad V_{2}=\frac{2}{3} \quad V_{3}=\frac{2}{3}
$$

Relative Utilizations $\quad u_{1}=1 \quad u_{2}=\frac{4}{3} \quad u_{3}=\frac{2}{3}$
Initialization $\quad N_{1}=0 \quad N_{2}=0 \quad N_{3}=0$

Recursion

$j=1$
$W_{1}(1)=1 \quad W_{2}(1)=2 \quad W_{3}(1)=1 \quad \lambda=\frac{1}{3}=0.33333$
$\lambda_{1}^{*}(1)=0.33333 \quad \lambda_{2}^{*}(1)=0.22222 \quad \lambda_{3}^{*}(1)=0.22222$
$N_{1}(1)=0.33333 \quad N_{2}(1)=0.44444 \quad N_{3}(1)=0.22222$
$j=2$

$$
W_{1}(2)=1.33333 \quad W_{2}(2)=2.88889 \quad W_{3}(2)=1.22222 \quad \lambda=0.49091
$$

$$
\lambda_{1}^{*}(2)=0.49091 \quad \lambda_{2}^{*}(2)=0.32727 \quad \lambda_{3}^{*}(2)=0.32727
$$

$$
N_{1}(2)=0.65455 \quad N_{2}(2)=0.94545 \quad N_{3}(2)=0.4
$$

$j=3$

$$
W_{1}(3)=1.65455 \quad W_{2}(3)=3.89091 \quad W_{3}(3)=1.4 \quad \lambda=0.57895
$$

$$
\lambda_{1}^{*}(3)=0.57895 \quad \lambda_{2}^{*}(3)=0.38597 \quad \lambda_{3}^{*}(3)=0.38597
$$

$$
N_{1}(3)=0.9579 \quad N_{2}(3)=1.50175 \quad N_{3}(3)=0.54035
$$

$j=4=M$

$$
\begin{array}{llll}
W_{1}(4)=1.9579 & W_{2}(4)=5.00351 & W_{3}(4)=1.54035 & \lambda=0.63287 \\
\lambda_{1}^{*}(4)=0.63287 & \lambda_{2}^{*}(4)=0.42191 & \lambda_{3}^{*}(4)=0.42191 & \\
N_{1}(4)=1.23908 & N_{2}(4)=2.11103 & N_{3}(4)=0.6499 &
\end{array}
$$

The State Dependent Service Rates for the corresponding FES would be
$T(1)=0.11111 \quad T(2)=0.16364$
$T(3)=0.193 \quad T(4)=0.211$
(b) We can define the system state as ($N_{F E S}, N_{Q 4}$) where

$$
N_{F E S}+N_{Q 4}=4
$$

The corresponding balance equations can be written to solve for the system state probabilities.

$$
\begin{array}{ll}
p_{13}=18.0002 p_{04} & p_{22}=12.222 p_{13}=220.02 p_{04} \\
p_{31}=10.3627 p_{22}=2280 p_{04} & p_{40}=9.4787 p_{31}=21611.27 p_{04}
\end{array}
$$

Since $p_{04}+p_{13}+p_{22}+p_{31}+p_{40}=1$, we get -

$$
\begin{aligned}
& P_{4}=p_{04}=0.41442 \times 10^{-4}=0.000041 \\
& P_{3}=p_{13}=0.74604 \times 10^{-3}=0.000746 \\
& P_{2}=p_{22}=0.009118 \\
& P_{1}=p_{31}=0.094488 \\
& P_{0}=p_{40}=0.895618
\end{aligned}
$$

