EEE33 Queueing Systems (2011-12) Final Examination

Maximum Marks: 50

Time: 3 hours

1. (a) For the class 2 jobs, we can consider the system to be a simple M/G/1/2 system and solve for the state probabilities accordingly.

Considering the queue only for the Class 2 customers -

State probabilities at departure instants p_{di} *i*=0,1 State probabilities at arrival instants of those arrivals which actually enter the system

 $p_{aci} i=0,1$ State probabilities at arrival instants (all arrivals) $p_{ai} i=0,1,2$ Equilibrium State Probabilities $p_i i=0,1,2$ (Note $P_B = p_2$)

Transition probabilities at departure instants $p_{d,jk}$ j=0,1 and k=0,1

$$p_{d,00} = L_{B2}(\lambda_2) \quad p_{d,10} = L_{B2}(\lambda_2) \quad p_{d,01} = 1 - L_{B2}(\lambda_2) \quad p_{d,11} = 1 - L_{B2}(\lambda_2)$$

Balance Equation $p_{d0} = p_{d0}L_{B2}(\lambda_2) + p_{d1}L_{B2}(\lambda_2)$ and $p_{d0} + p_{d1} = 1$

$$\mathbf{r}_{a0} \mathbf{r}_{a0} \mathbf{r}_{a0} \mathbf{r}_{a0} \mathbf{r}_{a1} \mathbf{r}_{a1} \mathbf{r}_{a1} \mathbf{r}_{a1} \mathbf{r}_{a2} \mathbf{r}_{a2} \mathbf{r}_{a1} \mathbf{r}$$

Therefore, $p_{d0} = L_{B2}(\lambda_2)$ $p_{d1} = 1 - L_{B2}(\lambda_2)$ Using Kleinrock's Principle, $p_{ac0} = L_{B2}(\lambda_2)$ $p_{ac1} = 1 - L_{B2}(\lambda_2)$

Assuming P_{B2} as the blocking probability, we get –

$$p_{a0} = (1 - P_{B2}) p_{ac0} = (1 - P_{B2}) L_{B2}(\lambda_2) \quad p_{a1} = (1 - P_{B2}) p_{ac1} = (1 - P_{B2}) (1 - L_{B2}(\lambda_2)) \quad p_{a2} = P_{B2}$$

Using PASTA $p_i = p_{ai}$ i = 0, 1, 2

Traffic actually offered to the queue = $\rho_{c2} = \rho_2(1 - P_{B2})$ with $\rho_2 = \lambda_2 \overline{X}_2$

Therefore
$$p_0 = 1 - \rho_2 (1 - P_{B2}) = (1 - P_{B2}) L_{B2}(\lambda_2)$$
 or $P_{B2} = \frac{L_{B2}(\lambda_2) + \rho_2 - 1}{L_{B2}(\lambda_2) + \rho_2}$
 $p_0 = \frac{L_{B2}(\lambda_2)}{L_{B2}(\lambda_2) + \rho_2}$
 $p_1 = \frac{1 - L_{B2}(\lambda_2)}{L_{B2}(\lambda_2) + \rho_2}$
 $p_2 = P_{B2} = \frac{L_{B2}(\lambda_2) + \rho_2 - 1}{L_{B2}(\lambda_2) + \rho_2}$
State Probabilities
for Class 2 jobs

(b) Let α = P{no Class 2 arrivals in a Class 2 service time}

$$= \int_{0}^{\infty} e^{-\lambda_2 x} b_2(x) dx = L_{B2}(\lambda_2)$$

$$\overline{BP2} = \sum_{j=1}^{\infty} j \overline{X_2} \alpha (1-\alpha)^{j-1} = \frac{\overline{X_2}}{\alpha} = \frac{\overline{X_2}}{L_{B2}(\lambda_2)}$$

and

$$L_{BP2}(s) = \mathsf{E}\{e^{-s(BP2)}\} = \sum_{n=1}^{\infty} L_{B2}^{n}(s)(1-\alpha)^{n-1}\alpha = \left(\frac{\alpha}{1-\alpha}\right) \frac{(1-\alpha)L_{B2}(s)}{1-(1-\alpha)L_{B2}(s)}$$

$$= L_{BP2}(s) = \frac{L_{B2}(\lambda_2)L_{B2}(s)}{1 - [1 - L_{B2}(\lambda_2)]L_{B2}(s)} = \frac{L_{B2}(\lambda_2)L_{B2}(s)}{[1 - L_{B2}(s)] + L_{B2}(\lambda_2)L_{B2}(s)}$$

Note that we can also get $\overline{BP2}$ by differentiating the above and evaluating it at *s*=0 (add a minus sign!)

(c)
$$\overline{T} = \overline{X_1} + \lambda_2 \overline{X_1} \left(\overline{BP2} \right) = \overline{X_1} \left(1 + \frac{\rho_2}{L_{B2}(\lambda_2)} \right)$$

and

$$L_{T}(s) = E\{e^{-sT}\} = \sum_{n=0}^{\infty} E\left\{e^{-sX_{1}}L_{BP2}^{n}(s)\frac{(\lambda_{1}X_{1})^{n}}{n!}e^{-\lambda_{1}X_{1}}\right\}$$
$$= E\left\{\sum_{n=0}^{\infty} e^{-(s+\lambda_{1})X_{1}}\frac{(\lambda_{1}X_{1}L_{BP2}(s))^{n}}{n!}\right\}$$
$$= E\left\{e^{-(s+\lambda_{1}-\lambda_{1}L_{BP2}(s))X_{1}}\right\}$$
$$= L_{B1}(s+\lambda_{1}-\lambda_{1}L_{BP2}(s))$$

2. Representing the system state as (n_H, n_L) , we can draw the state transition diagram of the system as shown below.

$$(\lambda_{L} + \lambda_{H})p_{0} = p_{01}\mu_{L} + p_{10}\mu_{H}$$

$$p_{01} = \rho_{L}\left(1 + \frac{\lambda_{H}}{\lambda_{L} + \mu_{H}}\right)p_{0}$$
Define $P_{0x} = \sum_{i=1}^{\infty} p_{0i}$ and $P_{1x} = \sum_{i=0}^{\infty} p_{1i} \implies p_{0} + P_{0x} + P_{1x} = 1$

$$p_{01} = \rho_{L}(p_{0} + p_{10})$$

$$p_{02} = \rho_{L}(p_{01} + p_{11})$$

$$P_{0x} = \rho_{L}(P_{0x} + P_{1x}) + \rho_{L}p_{0}$$

$$P_{0x} = \frac{\rho_{L}}{1 - \rho_{L}}(P_{1x} + p_{0}) = \frac{\rho_{L}}{1 - \rho_{L}}(1 - P_{0x}) \quad \text{or} \quad P_{0x} = \rho_{L}$$

$$\lambda_{H}(p_{0} + p_{01} + p_{02} + \dots) = \mu_{H}(p_{10} + p_{11} + \dots)$$

$$P_{1x} = \rho_{H}(p_{0} + P_{0x}) = \rho_{H}(1 - P_{1x}) \quad \text{or} \quad P_{1x} = \frac{\rho_{H}}{1 + \rho_{H}}$$
and
$$p_{0} = \frac{1}{(1 + \rho_{H})} - \rho_{L}$$

(b) P{server is idle} = $p_0 = \frac{1}{(1 + \rho_H)} - \rho_L$

(c) P{Blocking for high priority jobs} = $P_{1x} = \frac{\rho_H}{1 + \rho_H}$

(d) P{finding one job in system} = $p_{01} + p_{10}$

$$= \left(\rho_L + (1+\rho_L)\frac{\lambda_H}{\lambda_L + \mu_H}\right)p_0 = \left(\frac{\lambda_H + \rho_L(\lambda_H + \lambda_L + \mu_H)}{(\lambda_L + \mu_H)}\right)p_0$$
$$= \left(\frac{\lambda_H + \rho_L(\lambda_H + \lambda_L + \mu_H)}{(\lambda_L + \mu_H)}\right)\left(\frac{1}{(1+\rho_H)} - \rho_L\right)$$

3. (a) L.T. of batch service time pdf Mean of batch service time Second moment of batch service time Offered Traffic $L_B(s) = 0.5L_{\alpha}(s) [1 + L_{\beta}(s)]$ $\overline{X} = \alpha(1) + 0.5\beta(1)$ $\overline{X}^2 = (\alpha(2) + \alpha(1)\beta(1) + 0.5\beta(2))$ $\rho = \lambda \overline{X} = \lambda [\alpha(1) + 0.5\beta(1)]$

For a batch considered as one job, we get –

L.T.of the pdf of batch queueing delay

$$L_{Wqb}(s) = \frac{s(1-\rho)}{s-\lambda+\lambda L_B(s)}$$
$$W_{qb} = \frac{\lambda \overline{X^2}}{2(1-\rho)}$$

Mean batch queueing delay

Therefore,

Mean queueing delay $W_{q} = W_{qb} + \frac{1}{3}\alpha(1)$ L.T. of the pdf of the queueing delay $L_{Wq}(s) = \frac{1}{3}L_{Wqb}(s)[2 + L_{\alpha}(s)]$

(b) Mean Queueing Delay for the second job in the batch = $W_{q2} = W_{qb} + \alpha(1)$

4. The flow balance equations are as follows.

$$\begin{split} \lambda_1 &= \lambda + \lambda_3 + \lambda_4 \\ \lambda_2 &= 0.5 \big[0.5\lambda_1 + 0.1\lambda_2 \big] = 0.25\lambda_1 + 0.05\lambda_2 \implies \lambda_1 = 3.8\lambda_2 \\ \lambda_3 &= 2\lambda + \lambda_2 \qquad \lambda_4 = 0.4\lambda_2 \\ \end{split}$$
Therefore, $3.8\lambda_2 = \lambda + 2\lambda + \lambda_2 + 0.4\lambda_2 \qquad \lambda_2 = 1.25\lambda \\ \tilde{\lambda} &= (4.75\lambda, 1.25\lambda, 3.25\lambda, 0.5\lambda) \text{ and } \tilde{\rho} = (4.75\rho, 2.5\rho, 6.5\rho, 0.5\rho) \text{ for } \rho = \lambda/\mu \end{split}$

(a) For system to be stable, we need $6.5\rho < 1$ or $\lambda < 0.1538\mu$

(b) For λ =0.1 and μ =1, we have $\tilde{\lambda} = (0.475, 0.125, 0.325, 0.05)$ $\tilde{\rho} = (0.475, 0.25, 0.65, 0.05)$

 $\tilde{N} = (0.905, 0.333, 1.857, 0.053)$

Total Number in system = 3.148

Therefore, Mean Time spent in System = 3.148/0.3 = 10.49

The individual delays through Q1-Q4 are given below (useful later in (c)) $\tilde{W} = (1.9053, 2.66666, 5.71385, 1.06)$

(c) For λ =0.1 and μ =1, we set the input from **A** to zero (i.e. only considering the inputs from **B**) and calculate the corresponding flows for each queue using flow balance

$$\begin{split} \lambda_1 &= \lambda_3 + \lambda_4 \\ \lambda_2 &= 0.5 \big[0.5\lambda_1 + 0.1\lambda_2 \big] = 0.25\lambda_1 + 0.05\lambda_2 \implies \lambda_1 = 3.8\lambda_2 \\ \lambda_3 &= 0.2 + \lambda_2 \qquad \lambda_4 = 0.4\lambda_2 \\ \end{split}$$
Therefore, $3.8\lambda_2 = 0.2 + \lambda_2 + 0.4\lambda_2 \qquad \lambda_2 = 0.2/2.4 = 0.08333 \\ \tilde{\lambda} &= (0.31667, 0.08333, 0.28333, 0.033333) \\ \end{split}$
Visit Ratios: $\tilde{V} = (1.58333, 0.41667, 1.41667, 0.16667)$

Mean Transit Time for Job entering at B = $\sum_{i=1}^{4} V_i W_i = 12.39909$

5. (a) Since Q4 is the designated sub-network, for computation of the FES, we need to redraw the network with Q4 shorted. We then compute $T(j)=0.5\lambda_2^*(j)$ as the throughput through that short for j=1,2,...,M where j is the number of jobs circulating in the network. (Note M=4)

$$\lambda_1 = \lambda_3 + 0.5\lambda_2 \qquad \lambda_2 = \lambda_3 = 0.5 \big[\lambda_1 + 0.5\lambda_2\big]$$

Therefore $\lambda_2 = \lambda_3 = \frac{2}{3}\lambda_1$

Choosing Q1 as the reference queue with $\lambda_1 = \mu$, we get –

Relative Throughputs
$$\lambda_1 = \mu \quad \lambda_2 = \frac{2}{3}\mu \quad \lambda_3 = \frac{2}{3}\mu$$

Visit Ratios	$V_1 = 1$ $V_2 = \frac{2}{3}$ $V_3 = \frac{2}{3}$
Relative Utiliz	4 2
Initialization Recursion <i>j</i> =1	$N_1 = 0$ $N_2 = 0$ $N_3 = 0$
$W_1(1) = 1 W_2(1) = 1$	$\lambda = 2$ $W_3(1) = 1$ $\lambda = \frac{1}{2} = 0.33333$
$\lambda_1^*(1) = 0.33333$ $\lambda_2^*(1) = 0.22222$ $\lambda_3^*(1) = 0.22222$ $N_1(1) = 0.33333$ $N_2(1) = 0.44444$ $N_3(1) = 0.22222$	
j=2	$W_{1}(2) = 1.33333 W_{2}(2) = 2.88889 W_{3}(2) = 1.22222 \qquad \lambda = 0.49091$ $\lambda_{1}^{*}(2) = 0.49091 \lambda_{2}^{*}(2) = 0.32727 \lambda_{3}^{*}(2) = 0.32727 \\ N_{1}(2) = 0.65455 N_{2}(2) = 0.94545 N_{3}(2) = 0.4$
<i>j</i> =3	$W_{1}(3) = 1.65455 W_{2}(3) = 3.89091 W_{3}(3) = 1.4 \qquad \lambda = 0.57895$ $\lambda_{1}^{*}(3) = 0.57895 \lambda_{2}^{*}(3) = 0.38597 \qquad \lambda_{3}^{*}(3) = 0.38597$ $N_{1}(3) = 0.9579 \qquad N_{2}(3) = 1.50175 \qquad N_{3}(3) = 0.54035$
<i>j</i> =4=M	$W_{1}(4) = 1.9579 W_{2}(4) = 5.00351 W_{3}(4) = 1.54035 \qquad \lambda = 0.63287$ $\lambda_{1}^{*}(4) = 0.63287 \lambda_{2}^{*}(4) = 0.42191 \lambda_{3}^{*}(4) = 0.42191$ $N_{1}(4) = 1.23908 N_{2}(4) = 2.11103 N_{3}(4) = 0.6499$
	Dependent Service Rates for the T(j)
T(1)=0.11111 T(3)=0.193	T(2)=0.16364 Q4 $T(4)=0.211$ Q4
(b) We can o where	define the system state as (N_{FES} , N_{Q4})
	$N_{FES} + N_{Q4} = 4$
2	2 2 2
(0,4)	(1,3) (2,2) (3,1) (4,0)

0.11111 0.16364 0.193 0.211

The corresponding balance equations can be written to solve for the system state probabilities.

$$p_{13} = 18.0002 p_{04} \qquad p_{22} = 12.222 p_{13} = 220.02 p_{04} \\ p_{31} = 10.3627 p_{22} = 2280 p_{04} \qquad p_{40} = 9.4787 p_{31} = 21611.27 p_{04}$$

Since $p_{04} + p_{13} + p_{22} + p_{31} + p_{40} = 1$, we get –

$$\begin{split} P_4 &= p_{04} = 0.41442 \times 10^{-4} = 0.000041 \\ P_3 &= p_{13} = 0.74604 \times 10^{-3} = 0.000746 \\ P_2 &= p_{22} = 0.009118 \\ P_1 &= p_{31} = 0.094488 \\ P_0 &= p_{40} = 0.895618 \end{split}$$